Skip to main content

Advertisement

Log in

Functional imaging of the bowel

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Functional imaging techniques enable physiological information to be derived, which, combined with high-resolution anatomical imaging, has the potential to improve the management of patients with intestinal disease. Two of the common pathologies where imaging has a substantial role in depicting disease extent, in staging disease, and assessing therapeutic response and/or disease relapse are cancer and inflammatory bowel disease. In these scenarios, functional imaging may augment assessment of disease activity, therapeutic response/non-response, as well as disease relapse by indicating physiological changes as a result of tumor, inflammation, or fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cohade C, Osman M, Leal J, Wahl RL (2003) Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med 44:1797–1803

    PubMed  Google Scholar 

  2. Kumar R, Halanaik D, Malhotra A (2010) Clinical applications of positron emission tomography–computed tomography in oncology. Indian J Cancer 47:100–119

    Article  PubMed  CAS  Google Scholar 

  3. Davey K, Heriot AG, Mackay J, et al. (2009) The impact of 18-fluroodeoxyglucose positron emission tomography–computed tomography on the staging and management of primary rectal cancer. Dis Colon Rectum 51:997–1003

    Article  Google Scholar 

  4. Gearhart SL, Frassica D, Rosen R, et al. (2006) Improved staging with pretreatment positron emission tomography/computed tomography in low rectal cancer. Ann Surg Oncol 13:397–404

    Article  PubMed  Google Scholar 

  5. Park IJ, Kim HC, Yu CS, et al. (2006) Efficacy of PET/CT in the accurate evaluation of primary colorectal carcinoma. Eur J Surg Oncol 32:941–947

    Article  PubMed  CAS  Google Scholar 

  6. Llamas-Elvira JM, Rodriguez-Fernandez A, Gutierrez-Sainz J, et al. (2007) Fluorine 18 fluorodeoxyglucose PET in the preoperative staging of colorectal cancer. Eur J Nuc Med Mol Imaging 34:859–867

    Article  CAS  Google Scholar 

  7. Wiering B, Krabbe PF, Jager GJ, Oyen WJG, Ruers TJ (2005) The impact of fluoro-18-deoxyglucose-positron emission tomography in the management of colorectal liver metastases. Cancer 104:2658–2670

    Article  PubMed  Google Scholar 

  8. Kong G, Jackson C, Koh DM, et al. (2008) The use of 18F-FDG PET/CT in colorectal liver metastases—comparison with CT and liver MRI. Eur J Nucl Med Mol Imaging 35:1323–1329

    Article  PubMed  CAS  Google Scholar 

  9. Capirci C, Rampin L, Erba PA, et al. (2007) Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy. Eur J Nuc Med Mol Imaging 34:1583–1593

    Article  CAS  Google Scholar 

  10. Calvo FA, Domper M, Matute R, et al. (2004) 18F-FDG positron emission tomography staging and restaging in rectal cancer treated with preoperative chemoradiation. Int J Radiat Oncol Biol Phys 58:528–535

    Article  PubMed  Google Scholar 

  11. Kubota R, Yamada S, Kubota K, et al. (1992) Intratumoural distribution of fluorine-18-fllruodeoxyglocose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    PubMed  CAS  Google Scholar 

  12. Amthauer H, Denecke T, Rau B, et al. (2004) Response prediction by FDG-PET after neoadjuvant radiochemotherapy and combined regional hyperthermia of rectal cancer: correlation with endorectal ultrasound and histopathology. Eur J Nucl Med Mol Imaging 31:811–819

    Article  PubMed  Google Scholar 

  13. Huebner RH, Park KC, Shepherd JE, et al. (2000) A meta-analysis of the literature for whole body FDG PET detection of colorectal cancer. J Nucl Med 41:1177–1189

    PubMed  CAS  Google Scholar 

  14. Selzner M, Hany TF, Wildbrett P, et al. (2004) Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg 240:1027–1036

    Article  PubMed  Google Scholar 

  15. Chen LB, Tong JL, Song HZ, Zhu H, Wang YC (2007) (18)F-DG PET/CT in detection of recurrence and metastasis of colorectal cancer. World J Gastroenterol 13:5025–5029

    PubMed  Google Scholar 

  16. Bassi MC, Turri L, Sacchetti G, et al. (2008) FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys 70:1423–1426

    Article  PubMed  Google Scholar 

  17. Mees G, Dierckx R, Vangestel C, Van de Wiele C (2009) Molecular imaging of hypoxia with radiolabeled agents. Eur J Nucl Med Mol Imaging 36:1674–1686

    Article  PubMed  CAS  Google Scholar 

  18. Roels S, Slagmolen P, Nuyts J, et al. (2008) Biological image guided radiotherapy in rectal cancer: is there a role for FMISO or FLT, next to FDG? Acta Oncol 47:1237–1248

    Article  PubMed  CAS  Google Scholar 

  19. Francis DL, Freeman A, Visvikis D, et al. (2003) In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 52:1602–1606

    Article  PubMed  CAS  Google Scholar 

  20. Bettenworth D, Reuter S, Hermann S, et al. (2013) Translational 18F-FDG PET/CT imaging to monitor lesion activity in intestinal inflammation. J Nucl Med 54:748–755

    Article  PubMed  CAS  Google Scholar 

  21. Lenze F, Wessling J, Bremer J, et al. (2012) Detection and differentiation of inflammatory versus fibromatous Crohn’s disease strictures: prospective comparison of 18F-FDG-PET/CT, MR-enteroclysis, and transabdominal ultrasound versus endoscopic/histologic evaluation. Inflamm Bowel Dis 18:2252–2260

    Article  PubMed  Google Scholar 

  22. Shyn PB (2012) 18F-FDG positron emission tomography: potential utility in the assessment of Crohn’s disease. Abdom Imaging 37:377–386

    Article  PubMed  Google Scholar 

  23. Shyn PB, Mortele KJ, Britz-Cunningham SH, et al. (2010) Low-dose 18F-FDG PET/CT enterography: improving on CT enterography assessment of patients with Crohn disease. J Nucl Med. 51:1841–1848

    Article  PubMed  Google Scholar 

  24. Groshar D, Bernstine H, Stern D, et al. (2010) PET/CT enterography in Crohn disease: correlation of disease activity on CT enterography with 18F-FDG uptake. J Nucl Med 51:1009–1014

    Article  PubMed  Google Scholar 

  25. Jacene HA, Ginsburg P, Kwon J, et al. (2009) Prediction of the need for surgical intervention in obstructive Crohn’s disease by 18F-FDG PET/CT. J Nucl Med 50:1751–1759

    Article  PubMed  CAS  Google Scholar 

  26. Meisner RS, Spier BJ, Einarsson S, et al. (2007) Pilot study using PET/CT as a novel, noninvasive assessment of disease activity in inflammatory bowel disease. Inflamm Bowel Dis 13:993–1000

    Article  PubMed  Google Scholar 

  27. Miles KA, Lee TY, Goh V, et al. (2012) Current status of dynamic contrast enhanced-computed tomography for the assessment of tumour vascular support. Eur Radiol 22:1430–1441

    Article  PubMed  CAS  Google Scholar 

  28. Leach MO, Morgan B, Tofts PS, et al. (2012) Imaging vascular function for early stage clinical trials using dynamic contrast enhanced MRI. Eur Radiol 22:1451–1464

    Article  PubMed  CAS  Google Scholar 

  29. Kut C, Mac Gabhann F, Popel AS (2007) Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer 97:978–985

    Article  PubMed  CAS  Google Scholar 

  30. Zheng S, Han MY, Xiao ZX, Peng J-P, Dong Q (2003) Clinical significance of vascular endothelial growth factor expression and neovascularization in colorectal carcinoma. World J Gastroenterol 9:1227–1230

    PubMed  Google Scholar 

  31. Staton CA, Chetwood ASA, Cameron IC, et al. (2007) The angiogenic switch occurs at the adenoma stage of the adenoma-carcinoma sequence in colorectal cancer. Gut 56:1426–1432

    Article  PubMed  Google Scholar 

  32. Danese S, Sans M, de la Motte C, et al. (2006) Angiogenesis as a novel componentof inflammatory bowel disease pathogenesis. Gastroenterology 130:2060–2073

    Article  PubMed  CAS  Google Scholar 

  33. Scaldaferri F, Vetrano S, Sans M, et al. (2009) VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136:585–595

    Article  PubMed  CAS  Google Scholar 

  34. Goh V, Halligan S, Daley F, et al. (2008) Colorectal tumor vascularity: quantitative assessment with multidetector CT—do tumor perfusion measurements reflect angiogenesis? Radiology 249:510–517

    Article  PubMed  Google Scholar 

  35. Goh V, Rodriguez-Justo M, Engledow A, et al. (2012) Assessment of the metabolic-flow phenotype of primary colorectal cancer: correlations with microvessel density are influenced by the histological scoring method. Eur Radiol. 22:1871–1880

    Article  PubMed  Google Scholar 

  36. George ML, Dzik-Jurasz AS, Padhani AR, et al. (2001) Non invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88:1628–1636

    Article  PubMed  CAS  Google Scholar 

  37. Dighe S, Blake H, Jeyadevan N, et al. (2013) Perfusion CT vascular parameters do not correlate with immnohistochemically derived microvessel density count in colorectal tumors. Radiology 268:400–410

    Article  PubMed  Google Scholar 

  38. Bellomi M, Petralia G, Sonzogni A, et al. (2007) CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience. Radiology 244:486–493

    Article  PubMed  Google Scholar 

  39. Li Z-P, Meng Q-F, Sun C-H, et al. (2005) Tumor angiogenesis and dynamic CT in colorectal carcinoma: Radiologic–pathologic correlation. World J Gastroenterol 11:1287–1291

    PubMed  Google Scholar 

  40. Feng S-T, Sun C-H, Li Z-P, et al. (2010) Evaluation of angiogenesis in colorectal carcinoma with multidetector CT multislice perfusion imaging. Eur J Radiol 75:191–196

    Article  PubMed  Google Scholar 

  41. Atkin G, Taylor NJ, Daley FM, et al. (2006) Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis. Br J Surg 93:992–1000

    Article  PubMed  CAS  Google Scholar 

  42. Taylor SA, Punwani S, Rodriguez-Justo M, et al. (2009) Mural Crohn’s disease: correlation of dynamic contrast enhanced MR imaging findings with angiogenesis and inflammation at histologic examination. Radiology 251:369–379

    Article  PubMed  Google Scholar 

  43. de Vries AF, Griebel J, Kremser C, et al. (2000) Monitoring of tumor microcirculation during fractionated radiation therapy in patients with rectal carcinoma: preliminary results and implications for therapy. Radiology 217:385–391

    Article  PubMed  Google Scholar 

  44. Sahani DV, Kalva SP, Hamberg LM, et al. (2005) Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 234:785–792

    Article  PubMed  Google Scholar 

  45. de Lussanet QG, Backes WH, Griffoen AW, et al. (2005) Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 63:1309–1315

    Article  PubMed  Google Scholar 

  46. De Milito A, Fais S (2005) Tumor acidity, chemoresistance and proton pump inhibitors. Fut Oncol 1:779–786

    Article  Google Scholar 

  47. Torricelli P, Pecchi A, Luppi G, et al. (2003) Gadolinium-enhanced MRI with dynamic evaluation in diagnosing the local recurrence of rectal cancer. Abdom Imaging 28:19–27

    Article  PubMed  CAS  Google Scholar 

  48. Ziech ML, Lavini C, Caan MW, et al. (2012) Dynamic contrast-enhanced MRI in patients with luminal Crohn’s disease. Eur J Radiol 81:3019–3027

    Article  PubMed  CAS  Google Scholar 

  49. Pupillo VA, Di Cesare E, Frieri G, et al. (2007) Assessment of inflammatory activity in Crohn’s disease by means of dynamic contrast-enhanced MRI. Radiol Med 112:798–809

    Article  PubMed  CAS  Google Scholar 

  50. Florie J, Wasser MN, Arts-Cieslik K, et al. (2006) Dynamic contrast-enhanced MRI of the bowel wall for assessment of disease activity in Crohn’s disease. AJR Am J Roentgenol 186:1384–1392

    Article  PubMed  Google Scholar 

  51. deSouza NM, Riches SF, Vanas NJ, et al. (2008) Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumour aggressiveness in localized prostate cancer. Clin Radiol 63:774–782

    Article  PubMed  CAS  Google Scholar 

  52. Curvo-Semedo L, Lambregts DMJ, Maas M, et al. (2012) Diffusion weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Mag Res Imaging 35:1365–1371

    Article  Google Scholar 

  53. Gu J, Khong P-L, Wang S, et al. (2011) Quantitative assessment of diffusion-weighted MR imaging in patients with primary rectal cancer: correlation with FDG-PET/CT. Mol Imaging Biol 13:1020–1028

    Article  PubMed  Google Scholar 

  54. Mizukami Y, Ueda S, Mizumoto A, et al. (2011) Diffusion-weighted magnetic resonance imaging for detecting lymph node metastasis of rectal cancer. World J Surg 35:895–899

    Article  PubMed  Google Scholar 

  55. Lambregts DMJ, Maas M, Riedl RG, et al. (2011) Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer—a per lesion validation study. Eur Radiol 21:265–273

    Article  PubMed  Google Scholar 

  56. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66

    Article  PubMed  Google Scholar 

  57. DeVries AF, Kremser C, Hein PA, et al. (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56:958–965

    Article  PubMed  Google Scholar 

  58. Hein PA, Kremser C, Judmaier W, et al. (2003) Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol 45:214–222

    Article  PubMed  Google Scholar 

  59. Kim SH, Lee JM, Hong SH, et al. (2009) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology 253:116–125

    Article  PubMed  Google Scholar 

  60. Sun YS, Zhang XP, Tang L, et al. (2010) Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging. Radiology 254:170–178

    Article  PubMed  Google Scholar 

  61. Lambrecht M, Deroose C, Roels S, et al. (2010) The use of FDG-PET/CT and diffusion-weighted magnetic resonance imaging for response prediction before, during and after preoperative chemoradiotherapy for rectal cancer. Acta Oncol 49:956–963

    Article  PubMed  Google Scholar 

  62. Cui Y, Zhang XP, Sun YS, Tang L, Shen L (2008) Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 248:894–900

    Article  PubMed  Google Scholar 

  63. Padhani AR, Liu G, Koh DM, et al. (2009) Diffusion weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    PubMed  CAS  Google Scholar 

  64. Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5:220–233

    Article  PubMed  Google Scholar 

  65. Ono K, Ochiai R, Yoshida T, et al. (2009) Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro- 2-deoxy-d-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging 29:336–340

    Article  PubMed  Google Scholar 

  66. Takahara T, Imai Y, Yamashita T, et al. (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  67. Lambregts D, Maas M, Cappendijk V, et al. (2010) Whole body diffusion weighted imaging for distant staging in colorectal cancer: feasibility and future challenges. Ann Oncol 21:i22 ((abstract))

    Google Scholar 

  68. Kiryu S, Dodanuki K, Takao H (2009) Free-breathing diffusion weighted imaging for the assessment of inflammatory activity in Crohn’s disease. J Magn Reson Imaging 29:880–886

    Article  PubMed  Google Scholar 

  69. Oto A, Zhu F, Kulkarni K, et al. (2009) Evaluation of diffusion weighted MR imaging for detection of bowel inflammation in patients with Crohn’s disease. Acad Radiol 16:597–603

    Article  PubMed  Google Scholar 

  70. Neubauer H, Pabst T, Dick A, et al. (2013) Small-bowel MRI in children and young adults with Crohn disease: retrospective head-to-head comparison of contrast-enhanced and diffusion-weighted MRI. Pediatr Radiol. 43:103–114

    Article  PubMed  Google Scholar 

  71. Buisson A, Joubert A, Montoriol PF, et al. (2013) Diffusion-weighted magnetic resonance imaging for detecting and assessing ileal inflammation in Crohn’s disease. Aliment Pharmacol Ther 37:537–545

    Article  PubMed  CAS  Google Scholar 

  72. Oussalah A, Laurent V, Bruot O, et al. (2010) Diffusion-weighted magnetic resonance without bowel preparation for detecting colonic inflammation in inflammatory bowel disease. Gut 59:1056–1065

    Article  PubMed  Google Scholar 

  73. Oto A, Kayhan A, Williams JTB, et al. (2011) Active Crohn’s disease in the small bowel: evaluation by diffusion weighted imaging and quantitative dynamic contrast enhanced MR imaging. J Magn Reson Imaging 33:615–624

    Article  PubMed  Google Scholar 

  74. Tzika AA, Astrakas LG, Zarifi MK, et al. (2004) Spectroscopic and perfusion magnetic resonance imaging predictors of progression in pediatric brain tumors. Cancer 100:1246–1256

    Article  PubMed  Google Scholar 

  75. Cunningham CH, Vigneron DB, Marjanska M, et al. (2005) Sequence design for magnetic resonance spectroscopic imaging of prostate cancer at 3 T. Magn Reson Med 53:1033–1039

    Article  PubMed  Google Scholar 

  76. Heerschap A, Jager GJ, van der Graaf M, et al. (1997) In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anti-cancer Res 17:1455–1460

    CAS  Google Scholar 

  77. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16:451–463

    Article  PubMed  Google Scholar 

  78. Kim MJ, Lee SJ, Lee JH, et al. (2012) Detection of rectal cancer and response to concurrent chemoradiotherapy by proton magnetic resonance spectroscopy. Magn Reson Imaging 30:848–853

    Article  PubMed  Google Scholar 

  79. Bezabeh T, Somorjai RL, Smith IC, et al. (2001) The use of 1H magnetic resonance spectroscopy in inflammatory bowel diseases: distinguishing ulcerative colitis from Crohn’s disease. Am J Gastroenterol 96:442–448

    Article  PubMed  CAS  Google Scholar 

  80. Guillem JG, Moore HG, Akhurst T, et al. (2004) Sequential preoperative FDG-PET assessment of response to preoperative chemoradiation: a means for determining longterm outcomes of rectal cancer. J Am Coll Surg 199:1–7

    Article  PubMed  Google Scholar 

  81. Cascini GL, Avallone A, Delrio P, et al. (2006) 18F-FDG PET is an early predictor of pathologic tumor response to preoperative radiochemotherapy in locally advancecd rectal cancer. J Nucl Med 47:1241–1248

    PubMed  CAS  Google Scholar 

  82. Janssen MH, Ollers MC, Riedl RG, et al. (2010) Accurate prediction of pathological rectal tumor response after two weeks of preoperative radiochemotherapy using (18)F-FDG PET/CT. Int J Radiat Oncol Biol Phys Med 77:392–399

    Article  Google Scholar 

  83. Avallone A, Aloj L, Caracò C, et al. (2012) Early FDG PET response assessment of preoperative radiochemotherapy in locally advancecd rectal cancer: correlation with long-term outcome. Eur J Nucl Med Mol Imaging 39:1848–1857

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky Goh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, N., Goh, V. Functional imaging of the bowel. Abdom Imaging 38, 1203–1213 (2013). https://doi.org/10.1007/s00261-013-0030-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-013-0030-8

Keywords

Navigation