Skip to main content

Advertisement

Log in

Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Lymph node metastasis is an indicator of the invasiveness and aggressiveness of cancer. It is a vital prognostic factor in clinical staging of the disease and therapeutic decision-making. Patients with positive metastatic lymph nodes are likely to develop recurrent disease, distant metastasis, and succumb to death in the coming few years. Lymph node dissection and histological analysis are needed to detect whether regional lymph nodes have been infiltrated by cancer cells and determine the likely outcome of treatment and the patient’s chances of survival. However, these procedures are invasive, and tissue biopsies are prone to sampling error. In recent years, advanced molecular imaging with novel imaging probes has provided new technologies that are contributing to comprehensive management of cancer, including non-invasive investigation of lymphatic drainage from tumors, identifying metastatic lymph nodes, and guiding surgeons to operate efficiently in patients with complex lesions. In this review, first, we outline the current status of different molecular imaging modalities applied for lymph node metastasis management. Second, we summarize the multi-functional imaging probes applied with the different imaging modalities as well as applications of cancer lymph node metastasis from preclinical studies to clinical translations. Third, we describe the limitations that must be considered in the field of molecular imaging for improved detection of lymph node metastasis. Finally, we propose future directions for molecular imaging technology that will allow more personalized treatment plans for patients with lymph node metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  2. Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, et al. Systems biology of cancer metastasis. Cell Syst. 2019;9:109–27. https://doi.org/10.1016/j.cels.2019.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klein CA. Cancer progression and the invisible phase of metastatic colonization. Nat Rev Cancer. 2020;20:681–94. https://doi.org/10.1038/s41568-020-00300-6.

    Article  CAS  PubMed  Google Scholar 

  4. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 2014;14:159–72. https://doi.org/10.1038/nrc3677.

    Article  CAS  PubMed  Google Scholar 

  5. Ma Q, Dieterich LC, Detmar M. Multiple roles of lymphatic vessels in tumor progression. Curr Opin Immunol. 2018;53:7–12. https://doi.org/10.1016/j.coi.2018.03.018.

    Article  CAS  PubMed  Google Scholar 

  6. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet (London, England). 2020;396:635–48. https://doi.org/10.1016/s0140-6736(20)31288-5.

    Article  CAS  PubMed  Google Scholar 

  7. Arjmandi F, Mootz A, Farr D, Reddy S, Dogan B. New horizons in imaging and surgical assessment of breast cancer lymph node metastasis. Breast Cancer Res Treat. 2021;187:311–22. https://doi.org/10.1007/s10549-021-06248-x.

    Article  PubMed  Google Scholar 

  8. Alix-Panabieres C, Magliocco A, Cortes-Hernandez LE, Eslami SZ, Franklin D, Messina JL. Detection of cancer metastasis: past, present and future. Clin Exp Metastasis. 2021. https://doi.org/10.1007/s10585-021-10088-w.

  9. Luciani A, Itti E, Rahmouni A, Meignan M, Clement O. Lymph node imaging: basic principles. Eur J Radiol. 2006;58:338–44. https://doi.org/10.1016/j.ejrad.2005.12.038.

    Article  PubMed  Google Scholar 

  10. Morgan B. Opportunities and pitfalls of cancer imaging in clinical trials. Nat Rev Clin Oncol. 2011;8:517–27. https://doi.org/10.1038/nrclinonc.2011.62.

    Article  PubMed  Google Scholar 

  11. Thoeny HC, Barbieri S, Froehlich JM, Turkbey B, Choyke PL. Functional and targeted lymph node imaging in prostate cancer: current status and future challenges. Radiology. 2017;285:728–43. https://doi.org/10.1148/radiol.2017161517.

    Article  PubMed  Google Scholar 

  12. Xi L, Jiang H. Image-guided surgery using multimodality strategy and molecular probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:46–60. https://doi.org/10.1002/wnan.1352.

    Article  PubMed  Google Scholar 

  13. Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019;20:e354–e67. https://doi.org/10.1016/s1470-2045(19)30317-1.

    Article  CAS  PubMed  Google Scholar 

  14. Barth CW, Gibbs SL. Fluorescence image-guided surgery—a perspective on contrast agent development. Proceedings of SPIE--the International Society for Optical Engineering. Proc SPIE Int Soc Opt Eng. 2020;11222. https://doi.org/10.1117/12.2545292.

  15. Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater (Deerfield Beach, Fla). 2020;32:e1907365. https://doi.org/10.1002/adma.201907365.

    Article  CAS  Google Scholar 

  16. van Leeuwen FWB, Schottelius M, Brouwer OR, Vidal-Sicart S, Achilefu S, Klode J, et al. Trending: radioactive and fluorescent bimodal/hybrid tracers as multiplexing solutions for surgical guidance. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2020;61:13–9. https://doi.org/10.2967/jnumed.119.228684.

  17. Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585. https://doi.org/10.1155/2012/940585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong G, Antaris AL, Dai H. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1:0010. https://doi.org/10.1038/s41551-016-0010.

    Article  CAS  Google Scholar 

  19. Li C, Chen G, Zhang Y, Wu F, Wang Q. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J Am Chem Soc. 2020;142:14789–804. https://doi.org/10.1021/jacs.0c07022.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv Mater (Deerfield Beach, Fla). 2019;31:e1900321. https://doi.org/10.1002/adma.201900321.

    Article  CAS  Google Scholar 

  21. Huang W, Wang K, Chen F, Li G, Chen X, Yang Q, et al. Intraoperative fluorescence visualization in thoracoscopic surgery. Ann Thorac Surg. 2022. https://doi.org/10.1016/j.athoracsur.2022.03.040.

  22. Qu Q, Zhang Z, Guo X, Yang J, Cao C, Li C, et al. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor. J Nanobiotechnol. 2022;20:143. https://doi.org/10.1186/s12951-022-01325-9.

    Article  CAS  Google Scholar 

  23. Liu H, Hong G, Luo Z, Chen J, Chang J, Gong M, et al. Atomic-precision gold clusters for NIR-II imaging. Adv Mater (Deerfield Beach, Fla). 2019;31:e1901015. https://doi.org/10.1002/adma.201901015.

    Article  CAS  Google Scholar 

  24. Liu H, Ren F, Zhou X, Ma C, Wang T, Zhang H, et al. Ultra-sensitive detection and inhibition of the metastasis of breast cancer cells to adjacent lymph nodes and distant organs by using long-persistent luminescence nanoparticles. Anal Chem. 2019;91:15064–72. https://doi.org/10.1021/acs.analchem.9b03739.

    Article  CAS  PubMed  Google Scholar 

  25. Ren TB, Wang ZY, Xiang Z, Lu P, Lai HH, Yuan L, et al. A general strategy for development of activatable NIR-II fluorescent probes for in vivo high-contrast bioimaging. Angew Chem Int Ed Eng. 2021;60:800–5. https://doi.org/10.1002/anie.202009986.

    Article  CAS  Google Scholar 

  26. Lameka K, Farwell MD, Ichise M. Positron emission tomography. Handb Clin Neurol. 2016;135:209–27. https://doi.org/10.1016/b978-0-444-53485-9.00011-8.

    Article  PubMed  Google Scholar 

  27. Hutton BF. The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S3–16. https://doi.org/10.1007/s00259-013-2606-5.

    Article  PubMed  Google Scholar 

  28. Abikhzer G, Keidar Z. SPECT/CT and tumour imaging. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S67–80. https://doi.org/10.1007/s00259-013-2534-4.

    Article  CAS  PubMed  Google Scholar 

  29. Tian R, Ke C, Rao L, Lau J, Chen X. Multimodal stratified imaging of nanovaccines in lymph nodes for improving cancer immunotherapy. Adv Drug Deliv Rev. 2020;161-162:145–60. https://doi.org/10.1016/j.addr.2020.08.009.

    Article  CAS  PubMed  Google Scholar 

  30. Roesch S, Lindner T, Sauter M, Loktev A, Flechsig P, Müller M, et al. Comparison of the RGD motif-containing α(v)β(6) integrin-binding peptides SFLAP3 and SFITGv6 for diagnostic application in HNSCC. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2018;59:1679–85. https://doi.org/10.2967/jnumed.118.210013.

  31. Xing Y, Chand G, Liu C, Cook GJR, O'Doherty J, Zhao L, et al. Early phase I study of a (99m)Tc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2019;60:1213–20. https://doi.org/10.2967/jnumed.118.224170.

  32. Zhang X, Zhao M, Wen L, Wu M, Yang Y, Zhang Y, et al. Sequential SPECT and NIR-II imaging of tumor and sentinel lymph node metastasis for diagnosis and image-guided surgery. Biomater Sci. 2021;9:3069–75. https://doi.org/10.1039/d1bm00088h.

    Article  CAS  PubMed  Google Scholar 

  33. Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol. 2014;9:233–9. https://doi.org/10.1038/nnano.2013.302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zackrisson S, van de Ven S, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 2014;74:979–1004. https://doi.org/10.1158/0008-5472.Can-13-2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev. 2019;48:2053–108. https://doi.org/10.1039/c8cs00618k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu Y, Mo F, Hu J, Jiang Q, Wang X, Zou Z, et al. Precision photothermal therapy and photoacoustic imaging by in situ activatable thermoplasmonics. Chem Sci. 2021;12:10097–105. https://doi.org/10.1039/d1sc02203b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater (Deerfield Beach, Fla). 2019;31:e1805875. https://doi.org/10.1002/adma.201805875.

    Article  CAS  Google Scholar 

  38. Modo M, Hoehn M, Bulte JW. Cellular MR imaging. Mol Imaging. 2005;4:143–64.

    Article  PubMed  Google Scholar 

  39. Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic resonance imaging of hard tissues and hard tissue engineered bio-substitutes. Mol Imaging Biol. 2019;21:1003–19. https://doi.org/10.1007/s11307-019-01345-2.

    Article  CAS  PubMed  Google Scholar 

  40. Hu H. Recent advances of bioresponsive nano-sized contrast agents for ultra-high-field magnetic resonance imaging. Front Chem. 2020;8:203. https://doi.org/10.3389/fchem.2020.00203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scheenen TWJ, Zamecnik P. The role of magnetic resonance imaging in (future) cancer staging: note the nodes. Investig Radiol. 2021;56:42–9. https://doi.org/10.1097/rli.0000000000000741.

    Article  Google Scholar 

  42. Ploussard G, Rouvière O, Rouprêt M, van den Bergh R, Renard-Penna R. The current role of MRI for guiding active surveillance in prostate cancer. Nat Rev Urol. 2022;19:357–65. https://doi.org/10.1038/s41585-022-00587-0.

    Article  PubMed  Google Scholar 

  43. de Leon A, Perera R, Nittayacharn P, Cooley M, Jung O, Exner AA. Ultrasound contrast agents and delivery systems in cancer detection and therapy. Adv Cancer Res. 2018;139:57–84. https://doi.org/10.1016/bs.acr.2018.04.002.

    Article  CAS  PubMed  Google Scholar 

  44. Wild JJ, Reid JM. Application of echo-ranging techniques to the determination of structure of biological tissues. Science (New York, NY). 1952;115:226–30. https://doi.org/10.1126/science.115.2983.226.

    Article  CAS  Google Scholar 

  45. Guo R, Lu G, Qin B, Fei B. Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med Biol. 2018;44:37–70. https://doi.org/10.1016/j.ultrasmedbio.2017.09.012.

    Article  PubMed  Google Scholar 

  46. Schmitz G, Dencks S. Ultrasound imaging. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2020;216:135-154. https://doi.org/10.1007/978-3-030-42618-7_4.

  47. Hu Z, Bachawal SV, Li X, Wang H, Wilson KE, Li P, et al. Detection and characterization of sentinel lymph node by ultrasound molecular imaging with B7-H3-targeted microbubbles in orthotopic breast cancer model in mice. Mol Imaging Biol. 2022;24:333–40. https://doi.org/10.1007/s11307-021-01680-3.

    Article  CAS  PubMed  Google Scholar 

  48. Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (New York). 2018;43:762–72. https://doi.org/10.1007/s00261-018-1516-1.

    Article  Google Scholar 

  49. Jia B, Zhang X, Wang B, Chen M, Lv F, Wang S, et al. Dual-modal probe based on polythiophene derivative for pre- and intraoperative mapping of lymph nodes by SPECT/optical imaging. ACS Appl Mater Interfaces. 2018;10:6646–51. https://doi.org/10.1021/acsami.8b01032.

    Article  CAS  PubMed  Google Scholar 

  50. Lin X, Liu C, Sheng Z, Gong X, Song L, Zhang R, et al. Highly sensitive fluorescence and photoacoustic detection of metastatic breast cancer in mice using dual-modal nanoprobes. ACS Appl Mater Interfaces. 2018;10:26064–74. https://doi.org/10.1021/acsami.8b09142.

    Article  CAS  PubMed  Google Scholar 

  51. Shi H, Yan R, Wu L, Sun Y, Liu S, Zhou Z, et al. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis. Acta Biomater. 2018;72:256–65. https://doi.org/10.1016/j.actbio.2018.03.035.

    Article  CAS  PubMed  Google Scholar 

  52. Yin L, Sun H, Zhao M, Wang A, Qiu S, Gao Y, et al. Rational design and synthesis of a metalloproteinase-activatable probe for dual-modality imaging of metastatic lymph nodes in vivo. J Org Chem. 2019;84:6126–33. https://doi.org/10.1021/acs.joc.9b00331.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Ding B, Qu C, Li H, Sun Y, Gai Y, et al. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol Oncol. 2020;14:1089–100. https://doi.org/10.1002/1878-0261.12674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van der Vorst JR, Schaafsma BE, Verbeek FP, Hutteman M, Mieog JS, Lowik CW, et al. Randomized comparison of near-infrared fluorescence imaging using indocyanine green and 99(m) technetium with or without patent blue for the sentinel lymph node procedure in breast cancer patients. Ann Surg Oncol. 2012;19:4104–11. https://doi.org/10.1245/s10434-012-2466-4.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Niikura H, Okamura C, Akahira J, Takano T, Ito K, Okamura K, et al. Sentinel lymph node detection in early cervical cancer with combination 99mTc phytate and patent blue. Gynecol Oncol. 2004;94:528–32. https://doi.org/10.1016/j.ygyno.2004.05.016.

    Article  PubMed  Google Scholar 

  56. Sondak VK, King DW, Zager JS, Schneebaum S, Kim J, Leong SP, et al. Combined analysis of phase III trials evaluating [99mTc]tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol. 2013;20:680–8. https://doi.org/10.1245/s10434-012-2612-z.

    Article  PubMed  Google Scholar 

  57. Ottenhof SR, Djajadiningrat RS, Versleijen MWJ, Donswijk ML, van der Noort V, Brouwer OR, et al. F-18 Fluorodeoxyglucose positron emission tomography with computed tomography has high diagnostic value for pelvic and distant staging in patients with high-risk penile carcinoma. Eur Urol Focus. 2022;8:98–104. https://doi.org/10.1016/j.euf.2021.02.012.

    Article  PubMed  Google Scholar 

  58. Yang SS, Wu YS, Chen WC, Zhang J, Xiao SM, Zhang BY, et al. Benefit of [18F]-FDG PET/CT for treatment-naïve nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging. 2022;49:980–91. https://doi.org/10.1007/s00259-021-05540-8.

    Article  PubMed  Google Scholar 

  59. Liu M, Anderson RC, Lan X, Conti PS, Chen K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med Res Rev. 2020;40:909–30. https://doi.org/10.1002/med.21642.

    Article  CAS  PubMed  Google Scholar 

  60. Lauwerends LJ, van Driel P, Baatenburg de Jong RJ, Hardillo JAU, Koljenovic S, Puppels G, et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery. Lancet Oncol 2021;22:e186-ee95. https://doi.org/10.1016/s1470-2045(20)30600-8.

  61. Papadia A, Gasparri ML, Buda A, Mueller MD. Sentinel lymph node mapping in endometrial cancer: comparison of fluorescence dye with traditional radiocolloid and blue. J Cancer Res Clin Oncol. 2017;143:2039–48. https://doi.org/10.1007/s00432-017-2501-8.

    Article  CAS  PubMed  Google Scholar 

  62. Mieog JSD, Achterberg FB, Zlitni A, Hutteman M, Burggraaf J, Swijnenburg RJ, et al. Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol. 2022;19:9–22. https://doi.org/10.1038/s41571-021-00548-3.

    Article  CAS  PubMed  Google Scholar 

  63. Frangioni JV. New technologies for human cancer imaging. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology. J Clin Oncol. 2008;26:4012–21. https://doi.org/10.1200/jco.2007.14.3065.

  64. Ditto A, Martinelli F, Bogani G, Papadia A, Lorusso D, Raspagliesi F. Sentinel node mapping using hysteroscopic injection of indocyanine green and laparoscopic near-infrared fluorescence imaging in endometrial cancer staging. J Minim Invasive Gynecol. 2015;22:132–3. https://doi.org/10.1016/j.jmig.2014.08.009.

    Article  PubMed  Google Scholar 

  65. Chen QY, Xie JW, Zhong Q, Wang JB, Lin JX, Lu J, et al. Safety and efficacy of Indocyanine green tracer-guided lymph node dissection during laparoscopic radical gastrectomy in patients with gastric cancer: a randomized clinical trial. JAMA Surg. 2020;155:300–11. https://doi.org/10.1001/jamasurg.2019.6033.

    Article  PubMed  Google Scholar 

  66. Hope-Ross M, Yannuzzi LA, Gragoudas ES, Guyer DR, Slakter JS, Sorenson JA, et al. Adverse reactions due to indocyanine green. Ophthalmology. 1994;101:529–33. https://doi.org/10.1016/s0161-6420(94)31303-0.

    Article  CAS  PubMed  Google Scholar 

  67. Ginimuge PR, Jyothi SD. Methylene blue: revisited. J Anaesthesiol Clin Pharmacol. 2010;26:517–20.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hua B, Li Y, Yang X, Ren X, Lu X. Short-term and long-term outcomes of indocyanine green for sentinel lymph node biopsy in early-stage breast cancer. World J Surg Oncol. 2022;20:253. https://doi.org/10.1186/s12957-022-02719-7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bézu C, Coutant C, Salengro A, Daraï E, Rouzier R, Uzan S. Anaphylactic response to blue dye during sentinel lymph node biopsy. Surg Oncol. 2011;20:e55–9. https://doi.org/10.1016/j.suronc.2010.10.002.

    Article  PubMed  Google Scholar 

  70. Masannat Y, Shenoy H, Speirs V, Hanby A, Horgan K. Properties and characteristics of the dyes injected to assist axillary sentinel node localization in breast surgery. European Journal of Surgical Oncology : the Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. Eur J Surg Oncol. 2006;32:381–4. https://doi.org/10.1016/j.ejso.2006.01.010.

  71. Cwalinski T, Polom W, Marano L, Roviello G, D'Angelo A, Cwalina N, et al. Methylene blue-current knowledge, fluorescent properties, and its future use. J Clin Med. 2020;9. https://doi.org/10.3390/jcm9113538.

  72. Richards P, Tucker WD, Srivastava SC. Technetium-99m: an historical perspective. Int J Appl Radiat Isot. 1982;33:793–9. https://doi.org/10.1016/0020-708x(82)90120-x.

    Article  CAS  PubMed  Google Scholar 

  73. Zalewski K, Benke M, Mirocha B, Radziszewski J, Chechlinska M, Kowalewska M. Technetium-99m-based radiopharmaceuticals in sentinel lymph node biopsy: gynecologic oncology perspective. Curr Pharm Des. 2018;24:1652–75. https://doi.org/10.2174/1381612824666180515122150.

    Article  CAS  PubMed  Google Scholar 

  74. Estourgie SH, Nieweg OE, Olmos RA, Rutgers EJ, Kroon BB. Lymphatic drainage patterns from the breast. Ann Surg. 2004;239:232–7. https://doi.org/10.1097/01.sla.0000109156.26378.90.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Vidal-Sicart S, Rioja ME, Prieto A, Goñi E, Gómez I, Albala MD, et al. Sentinel lymph node biopsy in breast cancer with (99m)Tc-Tilmanocept: a multicenter study on real-life use of a novel tracer. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2021;62:620–7. https://doi.org/10.2967/jnumed.120.252064.

  76. den Toom IJ, Mahieu R, van Rooij R, van Es RJJ, Hobbelink MGG, Krijger GC, et al. Sentinel lymph node detection in oral cancer: a within-patient comparison between [(99m)Tc]Tc-tilmanocept and [(99m)Tc]Tc-nanocolloid. Eur J Nucl Med Mol Imaging. 2021;48:851–8. https://doi.org/10.1007/s00259-020-04984-8.

    Article  CAS  Google Scholar 

  77. Quartuccio N, Garau LM, Arnone A, Pappalardo M, Rubello D, Arnone G, et al. Comparison of (99m)Tc-labeled colloid SPECT/CT and planar lymphoscintigraphy in sentinel lymph node detection in patients with melanoma: a meta-analysis. J Clin Med. 2020;9. https://doi.org/10.3390/jcm9061680.

  78. Meads C, Sutton AJ, Rosenthal AN, Małysiak S, Kowalska M, Zapalska A, et al. Sentinel lymph node biopsy in vulval cancer: systematic review and meta-analysis. Br J Cancer. 2014;110:2837–46. https://doi.org/10.1038/bjc.2014.205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sampson CB. Adverse reactions and drug interactions with radiopharmaceuticals. Drug Saf. 1993;8:280–94. https://doi.org/10.2165/00002018-199308040-00003.

    Article  CAS  PubMed  Google Scholar 

  80. Liang M, Yang M, Wang F, Wang X, He B, Mei C, et al. Near-infrared fluorescence-guided resection of micrometastases derived from esophageal squamous cell carcinoma using a c-Met-targeted probe in a preclinical xenograft model. Journal of Controlled Release : Official Journal of the Controlled Release Society. J Control Release. 2021;332:171–83. https://doi.org/10.1016/j.jconrel.2021.02.019.

  81. Krishnan G, van den Berg NS, Nishio N, Juniper G, Pei J, Zhou Q, et al. Metastatic and sentinel lymph node mapping using intravenously delivered Panitumumab-IRDye800CW. Theranostics. 2021;11:7188–98. https://doi.org/10.7150/thno.55389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vonk J, de Wit JG, Voskuil FJ, Tang YH, Hooghiemstra WTR, Linssen MD, et al. Epidermal growth factor receptor-targeted fluorescence molecular imaging for postoperative lymph node assessment in patients with oral cancer. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2022;63:672–8. https://doi.org/10.2967/jnumed.121.262530.

  83. Sharma SK, Sevak KK, Monette S, Carlin SD, Knight JC, Wuest FR, et al. Preclinical 89Zr immuno-PET of high-grade serous ovarian cancer and lymph node metastasis. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2016;57:771–6. https://doi.org/10.2967/jnumed.115.167072.

  84. Nam K, Stanczak M, Forsberg F, Liu JB, Eisenbrey JR, Solomides CC, et al. Sentinel lymph node characterization with a dual-targeted molecular ultrasound contrast agent. Mol Imaging Biol. 2018;20:221–9. https://doi.org/10.1007/s11307-017-1109-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang C, Yu X, Gao L, Zhao Y, Lai J, Lu D, et al. Noninvasive imaging of CD206-positive M2 macrophages as an early biomarker for post-chemotherapy tumor relapse and lymph node metastasis. Theranostics. 2017;7:4276–88. https://doi.org/10.7150/thno.20999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nishio N, van den Berg NS, van Keulen S, Martin BA, Fakurnejad S, Teraphongphom N, et al. Optical molecular imaging can differentiate metastatic from benign lymph nodes in head and neck cancer. Nat Commun. 2019;10:5044. https://doi.org/10.1038/s41467-019-13076-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lu G, van den Berg NS, Martin BA, Nishio N, Hart ZP, van Keulen S, et al. Tumour-specific fluorescence-guided surgery for pancreatic cancer using panitumumab-IRDye800CW: a phase 1 single-centre, open-label, single-arm, dose-escalation study. Lancet Gastroenterol Hepatol. 2020;5:753–64. https://doi.org/10.1016/s2468-1253(20)30088-1.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nishio N, van den Berg NS, Martin BA, van Keulen S, Fakurnejad S, Rosenthal EL, et al. Photoacoustic molecular imaging for the identification of lymph node metastasis in head and neck cancer using an anti-EGFR antibody-dye conjugate. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2021;62:648–55. https://doi.org/10.2967/jnumed.120.245241.

  89. Rosenthal EL, Moore LS, Tipirneni K, de Boer E, Stevens TM, Hartman YE, et al. Sensitivity and specificity of Cetuximab-IRDye800CW to identify regional metastatic disease in head and neck cancer. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research. Clin Cancer Res. 2017;23:4744–52. https://doi.org/10.1158/1078-0432.Ccr-16-2968.

  90. Sun X, Li Y, Liu T, Li Z, Zhang X, Chen X. Peptide-based imaging agents for cancer detection. Adv Drug Deliv Rev. 2017;110-111:38-51. https://doi.org/10.1016/j.addr.2016.06.007.

  91. Moore LJ, Roy LD, Zhou R, Grover P, Wu ST, Curry JM, et al. Antibody-guided in vivo imaging for early detection of mammary gland tumors. Transl Oncol. 2016;9:295–305. https://doi.org/10.1016/j.tranon.2016.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Miampamba M, Liu J, Harootunian A, Gale AJ, Baird S, Chen SL, et al. Sensitive in vivo visualization of breast cancer using ratiometric protease-activatable fluorescent imaging agent, AVB-620. Theranostics. 2017;7:3369–86. https://doi.org/10.7150/thno.20678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Y, Mai H, Yuan Y, Chen H, Wu S, Hu X, et al. EWS-FLI1-targeting peptide identifies Ewing sarcoma tumor boundaries and lymph node metastasis via near-infrared imaging. Mol Oncol. 2021;15:3706–20. https://doi.org/10.1002/1878-0261.13081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Unkart JT, Chen SL, Wapnir IL, González JE, Harootunian A, Wallace AM. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: a first-in-human phase 1 study. Ann Surg Oncol. 2017;24:3167–73. https://doi.org/10.1245/s10434-017-5991-3.

    Article  PubMed  Google Scholar 

  95. Nakamoto R, Ferri V, Duan H, Hatami N, Goel M, Rosenberg J, et al. Pilot-phase PET/CT study targeting integrin α(v)β(6) in pancreatic cancer patients using the cystine-knot peptide-based (18)F-FP-R(0)1-MG-F2. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05595-7.

  96. Lee S, Xie J, Chen X. Peptide-based probes for targeted molecular imaging. Biochemistry. 2010;49:1364–76. https://doi.org/10.1021/bi901135x.

    Article  CAS  PubMed  Google Scholar 

  97. Wang W, Hu Z. Targeting peptide-based probes for molecular imaging and diagnosis. Adv Mater (Deerfield Beach, Fla). 2019;31:e1804827. https://doi.org/10.1002/adma.201804827.

  98. Ayo A, Laakkonen P. Peptide-based strategies for targeted tumor treatment and imaging. Pharmaceutics. 2021;13. https://doi.org/10.3390/pharmaceutics13040481.

  99. Højlys-Larsen KB, Jensen KJ. Solid-phase synthesis of phosphopeptides. Methods Mol Biol (Clifton, NJ). 2013;1047:191-9. https://doi.org/10.1007/978-1-62703-544-6_13.

  100. Wu H, Huang J. PEGylated peptide-based imaging agents for targeted molecular imaging. Curr Protein Pept Sci. 2016;17:582–95. https://doi.org/10.2174/1389203717666160101123832.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang P, Cui Y, Anderson CF, Zhang C, Li Y, Wang R, et al. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev. 2018;47:3490–529. https://doi.org/10.1039/c7cs00793k.

    Article  CAS  PubMed  Google Scholar 

  102. van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:1315–9. https://doi.org/10.1038/nm.2472.

    Article  CAS  PubMed  Google Scholar 

  103. Kulterer OC, Pfaff S, Wadsak W, Garstka N, Remzi M, Vraka C, et al. A microdosing study with (99m)Tc-PHC-102 for the SPECT/CT imaging of primary and metastatic lesions in renal cell carcinoma patients. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2021;62:360–5. https://doi.org/10.2967/jnumed.120.245530.

  104. Schilham MGM, Zamecnik P, Privé BM, Israël B, Rijpkema M, Scheenen T, et al. Head-to-head comparison of (68)Ga-prostate-specific membrane antigen PET/CT and Ferumoxtran-10-enhanced MRI for the diagnosis of lymph node metastases in prostate cancer patients. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2021;62:1258–63. https://doi.org/10.2967/jnumed.120.258541.

  105. Luby BM, Charron DM, MacLaughlin CM, Zheng G. Activatable fluorescence: from small molecule to nanoparticle. Adv Drug Deliv Rev. 2017;113:97–121. https://doi.org/10.1016/j.addr.2016.08.010.

    Article  CAS  PubMed  Google Scholar 

  106. Liu T, Wu Y, Shi L, Li L, Hu B, Wang Y, et al. Preclinical evaluation of [(99m)Tc]Tc-labeled anti-EpCAM nanobody for EpCAM receptor expression imaging by immuno-SPECT/CT. Eur J Nucl Med Mol Imaging. 2022;49:1810–21. https://doi.org/10.1007/s00259-021-05670-z.

    Article  CAS  PubMed  Google Scholar 

  107. Klingenberg S, Jochumsen MR, Ulhøi BP, Fredsøe J, Sørensen KD, Borre M, et al. (68)Ga-PSMA PET/CT for primary lymph node and distant metastasis NM staging of high-risk prostate cancer. Journal of nuclear medicine : official publication. Soc Nucl Med. 2021;62:214–20. https://doi.org/10.2967/jnumed.120.245605.

    Article  CAS  Google Scholar 

  108. Sprute K, Kramer V, Koerber SA, Meneses M, Fernandez R, Soza-Ried C, et al. Diagnostic accuracy of (18)F-PSMA-1007 PET/CT imaging for lymph node staging of prostate carcinoma in primary and biochemical recurrence. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2021;62:208–13. https://doi.org/10.2967/jnumed.120.246363.

  109. Qin C, Liu F, Huang J, Ruan W, Liu Q, Gai Y, et al. A head-to-head comparison of (68)Ga-DOTA-FAPI-04 and (18)F-FDG PET/MR in patients with nasopharyngeal carcinoma: a prospective study. Eur J Nucl Med Mol Imaging. 2021;48:3228–37. https://doi.org/10.1007/s00259-021-05255-w.

    Article  CAS  PubMed  Google Scholar 

  110. Hoogstins CE, Tummers QR, Gaarenstroom KN, de Kroon CD, Trimbos JB, Bosse T, et al. A Novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research. Clin Cancer Res. 2016;22:2929–38. https://doi.org/10.1158/1078-0432.Ccr-15-2640.

  111. Han HH, Tian H, Zang Y, Sedgwick AC, Li J, Sessler JL, et al. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem Soc Rev. 2021;50:9391–429. https://doi.org/10.1039/d0cs01183e.

    Article  CAS  PubMed  Google Scholar 

  112. Ding F, Chen S, Zhang W, Tu Y, Sun Y. UPAR targeted molecular imaging of cancers with small molecule-based probes. Bioorg Med Chem. 2017;25:5179–84. https://doi.org/10.1016/j.bmc.2017.08.034.

    Article  CAS  PubMed  Google Scholar 

  113. Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr Drug Metab. 2019;20:416–29. https://doi.org/10.2174/1389200219666180918111528.

    Article  CAS  PubMed  Google Scholar 

  114. Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2. https://doi.org/10.1038/natrevmats.2017.24.

  115. Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer-targeted nanotheranostics: recent advances and perspectives. Small (Weinheim an der Bergstrasse, Germany). 2016;12:4936-54. https://doi.org/10.1002/smll.201600635.

  116. Wang G, Li W, Shi G, Tian Y, Kong L, Ding N, et al. Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation. Eur J Nucl Med Mol Imaging. 2022;49:2723–34. https://doi.org/10.1007/s00259-022-05834-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dumani DS, Sun IC, Emelianov SY. Ultrasound-guided immunofunctional photoacoustic imaging for diagnosis of lymph node metastases. Nanoscale. 2019;11:11649–59. https://doi.org/10.1039/c9nr02920f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Park B, Lee KM, Park S, Yun M, Choi HJ, Kim J, et al. Deep tissue photoacoustic imaging of nickel(II) dithiolene-containing polymeric nanoparticles in the second near-infrared window. Theranostics. 2020;10:2509–21. https://doi.org/10.7150/thno.39403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tseng YC, Xu Z, Guley K, Yuan H, Huang L. Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials. 2014;35:4688–98. https://doi.org/10.1016/j.biomaterials.2014.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pothayee N, Balasubramaniam S, Pothayee N, Jain N, Hu N, Lin Y, et al. Magnetic nanoclusters with hydrophilic spacing for dual drug delivery and sensitive magnetic resonance imaging. J Mater Chem B. 2013;1:1142–9. https://doi.org/10.1039/c2tb00275b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Thakor AS, Jokerst JV, Ghanouni P, Campbell JL, Mittra E, Gambhir SS. Clinically approved nanoparticle imaging agents. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2016;57:1833-7. https://doi.org/10.2967/jnumed.116.181362.

  122. Urban DA, Rodriguez-Lorenzo L, Balog S, Kinnear C, Rothen-Rutishauser B, Petri-Fink A. Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf B: Biointerfaces. 2016;137:39–49. https://doi.org/10.1016/j.colsurfb.2015.05.053.

    Article  CAS  PubMed  Google Scholar 

  123. Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv Drug Deliv Rev. 2022;181:114083. https://doi.org/10.1016/j.addr.2021.114083.

    Article  CAS  PubMed  Google Scholar 

  124. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94. https://doi.org/10.1038/nrclinonc.2017.166.

    Article  CAS  PubMed  Google Scholar 

  125. Ehlerding EB, Sun L, Lan X, Zeng D, Cai W. Dual-targeted molecular imaging of cancer. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine. J Nucl Med. 2018;59:390–5. https://doi.org/10.2967/jnumed.117.199877.

  126. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol. 2013;48:222–72. https://doi.org/10.3109/10409238.2013.770819.

    Article  CAS  PubMed  Google Scholar 

  127. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196:395–406. https://doi.org/10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bajaj J, Diaz E, Reya T. Stem cells in cancer initiation and progression. J Cell Biol. 2020;219. https://doi.org/10.1083/jcb.201911053.

  129. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110. https://doi.org/10.1038/nrc3447.

    Article  CAS  PubMed  Google Scholar 

  130. Cornelissen B, Knight JC, Mukherjee S, Evangelista L, Xavier C, Caobelli F, et al. Translational molecular imaging in exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging. 2018;45:2442–55. https://doi.org/10.1007/s00259-018-4146-5.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Miyasato DL, Mohamed AW, Zavaleta C. A path toward the clinical translation of nano-based imaging contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13:e1721. https://doi.org/10.1002/wnan.1721.

    Article  CAS  PubMed  Google Scholar 

  132. Pogue BW, Rosenthal EL. Review of successful pathways for regulatory approvals in open-field fluorescence-guided surgery. J Biomed Opt. 2021;26. https://doi.org/10.1117/1.Jbo.26.3.030901.

  133. Hu Z, Chen WH, Tian J, Cheng Z. NIRF nanoprobes for cancer molecular imaging: approaching clinic. Trends Mol Med. 2020;26:469–82. https://doi.org/10.1016/j.molmed.2020.02.003.

    Article  CAS  PubMed  Google Scholar 

  134. Wit EMK, van Beurden F, Kleinjan GH, Grivas N, de Korne CM, Buckle T, et al. The impact of drainage pathways on the detection of nodal metastases in prostate cancer: a phase II randomized comparison of intratumoral vs intraprostatic tracer injection for sentinel node detection. Eur J Nucl Med Mol Imaging. 2022;49:1743–53. https://doi.org/10.1007/s00259-021-05580-0.

    Article  CAS  PubMed  Google Scholar 

  135. Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, et al. Design considerations for tumour-targeted nanoparticles. Nat Nanotechnol. 2010;5:42–7. https://doi.org/10.1038/nnano.2009.314.

    Article  CAS  PubMed  Google Scholar 

  136. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17. https://doi.org/10.1038/s41556-018-0250-9.

    Article  CAS  PubMed  Google Scholar 

  137. Olmeda D, Cerezo-Wallis D, Castellano-Sanz E, García-Silva S, Peinado H, Soengas MS. Physiological models for in vivo imaging and targeting the lymphatic system: nanoparticles and extracellular vesicles. Adv Drug Deliv Rev. 2021;175:113833. https://doi.org/10.1016/j.addr.2021.113833.

    Article  CAS  PubMed  Google Scholar 

  138. Yi YW, Lee JH, Kim SY, Pack CG, Ha DH, Park SR, et al. Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21020665.

  139. Han L, Xu J, Xu Q, Zhang B, Lam EW, Sun Y. Extracellular vesicles in the tumor microenvironment: therapeutic resistance, clinical biomarkers, and targeting strategies. Med Res Rev. 2017;37:1318–49. https://doi.org/10.1002/med.21453.

    Article  CAS  PubMed  Google Scholar 

  140. Zheng X, Mao H, Huo D, Wu W, Liu B, Jiang X. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia. Nat Biomed Eng. 2017;1:0057. https://doi.org/10.1038/s41551-017-0057.

    Article  CAS  Google Scholar 

  141. Wu L, Zou H, Wang H, Zhang S, Liu S, Jiang Y, et al. Update on the development of molecular imaging and nanomedicine in China: Optical imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13:e1660. https://doi.org/10.1002/wnan.1660.

    Article  PubMed  Google Scholar 

  142. Widen JC, Tholen M, Yim JJ, Antaris A, Casey KM, Rogalla S, et al. AND-gate contrast agents for enhanced fluorescence-guided surgery. Nat Biomed Eng. 2021;5:264–77. https://doi.org/10.1038/s41551-020-00616-6.

    Article  CAS  PubMed  Google Scholar 

  143. Tsuchimochi M, Yamaguchi H, Hayama K, Okada Y, Kawase T, Suzuki T, et al. Imaging of metastatic cancer cells in sentinel lymph nodes using affibody probes and possibility of a theranostic approach. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20020427.

  144. Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, et al. Magnetic particle imaging: an emerging modality with prospects in diagnosis, targeting and therapy of cancer. Cancers. 2021;13. https://doi.org/10.3390/cancers13215285.

  145. Billings C, Langley M, Warrington G, Mashali F, Johnson JA. Magnetic particle imaging: current and future applications, magnetic nanoparticle synthesis methods and safety measures. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22147651.

  146. Song G, Zheng X, Wang Y, Xia X, Chu S, Rao J. A magneto-optical nanoplatform for multimodality imaging of tumors in mice. ACS Nano. 2019;13:7750–8. https://doi.org/10.1021/acsnano.9b01436.

    Article  CAS  PubMed  Google Scholar 

  147. Du Y, Liu X, Liang Q, Liang XJ, Tian J. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 2019;19:3618–26. https://doi.org/10.1021/acs.nanolett.9b00630.

    Article  CAS  PubMed  Google Scholar 

  148. Karaman S, Detmar M. Mechanisms of lymphatic metastasis. J Clin Invest. 2014;124:922–8. https://doi.org/10.1172/jci71606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol. 2017;11:781–91. https://doi.org/10.1002/1878-0261.12092.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ogawa F, Amano H, Eshima K, Ito Y, Matsui Y, Hosono K, et al. Prostanoid induces premetastatic niche in regional lymph nodes. J Clin Invest. 2014;124:4882–94. https://doi.org/10.1172/jci73530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhou H, Lei PJ, Padera TP. Progression of metastasis through lymphatic system. Cells. 2021;10. https://doi.org/10.3390/cells10030627.

  152. Acharya N, Sabatos-Peyton C, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer. 2020;8. https://doi.org/10.1136/jitc-2020-000911.

  153. Jiang J, Jin MS, Kong F, Cao D, Ma HX, Jia Z, et al. Decreased galectin-9 and increased Tim-3 expression are related to poor prognosis in gastric cancer. PLoS ONE. 2013;8:e81799. https://doi.org/10.1371/journal.pone.0081799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shariati S, Ghods A, Zohouri M, Rasolmali R, Talei AR, Mehdipour F, et al. Significance of TIM-3 expression by CD4(+) and CD8(+) T lymphocytes in tumor-draining lymph nodes from patients with breast cancer. Mol Immunol. 2020;128:47–54. https://doi.org/10.1016/j.molimm.2020.10.002.

    Article  CAS  PubMed  Google Scholar 

  155. Shan B, Man H, Liu J, Wang L, Zhu T, Ma M, et al. TIM-3 promotes the metastasis of esophageal squamous cell carcinoma by targeting epithelial-mesenchymal transition via the Akt/GSK-3β/Snail signaling pathway. Oncol Rep. 2016;36:1551–61. https://doi.org/10.3892/or.2016.4938.

    Article  CAS  PubMed  Google Scholar 

  156. Xu L, Huang Y, Tan L, Yu W, Chen D, Lu C, et al. Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int Immunopharmacol. 2015;29:635–41. https://doi.org/10.1016/j.intimp.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  157. Muynck L, Gaarenstroom KN, Sier CFM, Duijvenvoorde MV, Bosse T, Mieog JSD, et al. Novel molecular targets for tumor-specific imaging of epithelial ovarian cancer metastases. Cancers. 2020;12. https://doi.org/10.3390/cancers12061562.

  158. van Schaik JE, Hanemaaijer SH, Halmos GB, Witjes MJH, van der Laan B, van der Vegt B, et al. Glycoprotein nonmetastatic melanoma protein B as potential imaging marker in posttherapeutic metastatic head and neck cancer. Otolaryngology--Head and Neck Surgery : official Journal of American Academy of Otolaryngology-Head and Neck Surgery. Otolaryngol Head Neck Surg. 2020;163:1202–8. https://doi.org/10.1177/0194599820932869.

  159. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big Data: astronomical or genomical? PLoS Biol. 2015;13:e1002195. https://doi.org/10.1371/journal.pbio.1002195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69:127–57. https://doi.org/10.3322/caac.21552.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111:1452–60. https://doi.org/10.1111/cas.14377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chen J, He B, Dong D, Liu P, Duan H, Li W, et al. Noninvasive CT radiomic model for preoperative prediction of lymph node metastasis in early cervical carcinoma. Br J Radiol. 2020;93:20190558. https://doi.org/10.1259/bjr.20190558.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10. https://doi.org/10.1038/s41568-018-0016-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dong D, Fang MJ, Tang L, Shan XH, Gao JB, Giganti F, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study. Annals of Oncology : Official Journal of the European Society for Medical Oncology. Ann Oncol. 2020;31:912–20. https://doi.org/10.1016/j.annonc.2020.04.003.

  165. Wallis D, Soussan M, Lacroix M, Akl P, Duboucher C, Buvat I. An [18F]FDG-PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients. Eur J Nucl Med Mol Imaging. 2022;49:881–8. https://doi.org/10.1007/s00259-021-05513-x.

    Article  CAS  PubMed  Google Scholar 

  166. Ma Z, Wang F, Wang W, Zhong Y, Dai H. Deep learning for in vivo near-infrared imaging. Proc Natl Acad Sci U S A. 2021;118. https://doi.org/10.1073/pnas.2021446118.

  167. Yu Y, He Z, Ouyang J, Tan Y, Chen Y, Gu Y, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. EBioMedicine. 2021;69:103460. https://doi.org/10.1016/j.ebiom.2021.103460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dell'Oglio P, Meershoek P, Maurer T, Wit EMK, van Leeuwen PJ, van der Poel HG, et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy. Eur Urol. 2021;79:124–32. https://doi.org/10.1016/j.eururo.2020.10.031.

    Article  CAS  PubMed  Google Scholar 

  169. Tandel GS, Balestrieri A, Jujaray T, Khanna NN, Saba L, Suri JS. Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Comput Biol Med. 2020;122:103804. https://doi.org/10.1016/j.compbiomed.2020.103804.

    Article  PubMed  Google Scholar 

  170. Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence applications for thoracic imaging. Eur J Radiol. 2020;123:108774. https://doi.org/10.1016/j.ejrad.2019.108774.

    Article  PubMed  Google Scholar 

  171. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate cancer. Nat Rev Urol. 2019;16:391–403. https://doi.org/10.1038/s41585-019-0193-3.

    Article  PubMed  Google Scholar 

Download references

Funding

This work has received funding from Beijing Natural Science Foundation under grant No. 7212207 and National Natural Science Foundation of China under grant No. 62027901, 81871514, and 81227901.

Author information

Authors and Affiliations

Authors

Contributions

YD and ZQC conceived the manuscript; ZQC, JJM, LY, and LYY wrote the manuscript; YD, JT, BZ, and ZY supervised and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhu Yuan, Bo Zhang, Jie Tian or Yang Du.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participant included in the study.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology–General

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Ma, J., Yin, L. et al. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications. Eur J Nucl Med Mol Imaging 50, 1111–1133 (2023). https://doi.org/10.1007/s00259-022-06056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-06056-5

Keywords

Navigation