Skip to main content

Advertisement

Log in

Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To investigate the performance of short-time dynamic imaging in quantifying kinetic metrics of 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG).

Methods

Dynamic total-body positron emission tomography (PET) imaging was performed in 11 healthy volunteers for 75 min. The data were divided into 30-, 45- and 75-min groups. Nonlinear regression (NLR) generated constant rates (k1 to k3) and NLR-based Ki in various organs. The Patlak method calculated parametric Ki images to generate Patlak-based Ki values. Paired samples t-test or the Wilcoxon signed-rank test compared the kinetic metrics between the groups, depending on data normality. Deming regression and Bland–Altman analysis assessed the correlation and agreement between NLR- and Patlak-based Ki. A two-sided P < 0.05 was considered statistically significant.

Results

The 45- and 75-min groups were similar in NLR-based kinetic metrics. The relative difference ranges were as follows: k1, from 3.4% (P = 0.627) in the spleen to 57.9% (P = 0.130) in the white matter; k2, from 6.0% (P = 0.904) in the spleen to 60.7% (P = 0.235) in the left ventricle (LV) myocardium; k3, from 45.6% (P = 0.302) in the LV myocardium to 96.3% (P = 0.478) in the liver; Ki, from 14.0% (P = 0.488) in the liver to 77.8% (P = 0.067) in the kidney. Patlak-based Ki values were also similar between these groups in all organs, except the grey matter (9.6%, P = 0.029) and cerebellum (14.4%, P = 0.002). However, significant differences in kinetic metrics were found between the 30-min and 75-min groups in most organs both in NLR- and Patlak-based analyses. The NLR- and Patlak-based Ki values significantly correlated, with no bias in any of the organs.

Conclusion

Dynamic imaging using a high-sensitivity total-body PET scanner for a shorter time of 45 min could achieve relevant kinetic metrics of 18F-FDG as done by long-time imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The dataset used and/or analysed during the current study is available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33.

    Article  CAS  Google Scholar 

  2. Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285–91.

    Article  CAS  Google Scholar 

  3. Dunnwald LK, Doot RK, Specht JM, Gralow JR, Ellis GK, Livingston RB, et al. PET tumor metabolism in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17(8):2400–9.

    Article  CAS  Google Scholar 

  4. Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. concept, acquisition protocol optimization and clinical application. Phys Med Biol. 2013;58(20):7391–418.

  5. Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A. Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Eur J Nucl Med Mol Imaging. 2007;34(6):868–77.

    Article  Google Scholar 

  6. Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med. 2002;43(4):510–8.

    PubMed  Google Scholar 

  7. Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, Burger C, Heichel T, Willeke F, et al. Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading. J Nucl Med. 2001;42(5):713–20.

    CAS  PubMed  Google Scholar 

  8. Rusten E, Rodal J, Revheim ME, Skretting A, Bruland OS, Malinen E. Quantitative dynamic (1)(8)FDG-PET and tracer kinetic analysis of soft tissue sarcomas. Acta Oncol. 2013;52(6):1160–7.

    Article  CAS  Google Scholar 

  9. Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, Bernd L, Haberkorn U, Ewerbeck V, et al. 18F-FDG kinetics and gene expression in giant cell tumors. J Nucl Med. 2004;45(9):1528–35.

    CAS  PubMed  Google Scholar 

  10. Dimitrakopoulou-Strauss A, Hohenberger P, Pan L, Kasper B, Roumia S, Strauss LG. Dynamic PET with FDG in patients with unresectable aggressive fibromatosis: regression-based parametric images and correlation to the FDG kinetics based on a 2-tissue compartment model. Clin Nucl Med. 2012;37(10):943–8.

    Article  Google Scholar 

  11. Cochet A, Pigeonnat S, Khoury B, Vrigneaud JM, Touzery C, Berriolo-Riedinger A, et al. Evaluation of breast tumor blood flow with dynamic first-pass 18F-FDG PET/CT: comparison with angiogenesis markers and prognostic factors. J Nucl Med. 2012;53(4):512–20.

    Article  CAS  Google Scholar 

  12. Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Ruhl A, Irngartinger G, Stremmel W, et al. Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med. 2004;45(9):1480–7.

    CAS  PubMed  Google Scholar 

  13. Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, Vasamiliette J, Mechtersheimer G, Schmitt T, et al. Impact of dynamic 18F-FDG PET on the early prediction of therapy outcome in patients with high-risk soft-tissue sarcomas after neoadjuvant chemotherapy: a feasibility study. J Nucl Med. 2010;51(4):551–8.

    Article  Google Scholar 

  14. Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, Vasamiliette J, Schmitt T, Haberkorn U, et al. Prediction of chemotherapy outcome in patients with metastatic soft tissue sarcomas based on dynamic FDG PET (dPET) and a multiparameter analysis. Eur J Nucl Med Mol Imaging. 2010;37(8):1481–9.

    Article  CAS  Google Scholar 

  15. Humbert O, Lasserre M, Bertaut A, Fumoleau P, Coutant C, Brunotte F, et al. Breast cancer blood flow and metabolism on dual-acquisition (18)F-FDG PET: correlation with tumor phenotype and neoadjuvant chemotherapy response. J Nucl Med. 2018;59(7):1035–41.

    Article  CAS  Google Scholar 

  16. Ilan E, Sandstrom M, Velikyan I, Sundin A, Eriksson B, Lubberink M. Parametric net influx rate images of (68)Ga-DOTATOC and (68)Ga-DOTATATE: quantitative accuracy and improved image contrast. J Nucl Med. 2017;58(5):744–9.

    Article  CAS  Google Scholar 

  17. Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, et al. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol. 2015;60(22):8643–73.

    Article  CAS  Google Scholar 

  18. Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48(1):21–39.

    Article  Google Scholar 

  19. Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46(2):501–18.

    Article  Google Scholar 

  20. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med. 2019;60(3):299–303.

    Article  CAS  Google Scholar 

  21. Kimura N, Yamamoto Y, Kameyama R, Hatakeyama T, Kawai N, Nishiyama Y. Diagnostic value of kinetic analysis using dynamic 18F-FDG-PET in patients with malignant primary brain tumor. Nucl Med Commun. 2009;30(8):602–9.

    Article  Google Scholar 

  22. Wu H, Dimitrakopoulou-Strauss A, Heichel TO, Lehner B, Bernd L, Ewerbeck V, et al. Quantitative evaluation of skeletal tumours with dynamic FDG PET: SUV in comparison to Patlak analysis. Eur J Nucl Med. 2001;28(6):704–10.

    Article  CAS  Google Scholar 

  23. Mizrahi R, Rusjan PM, Vitcu I, Ng A, Wilson AA, Houle S, et al. Whole body biodistribution and radiation dosimetry in humans of a new PET ligand, [(18)F]-FEPPA, to image translocator protein (18 kDa). Mol Imaging Biol. 2013;15(3):353–9.

    Article  Google Scholar 

  24. Fujimura Y, Kimura Y, Simeon FG, Dickstein LP, Pike VW, Innis RB, et al. Biodistribution and radiation dosimetry in humans of a new PET ligand, 18F-PBR06, to image translocator protein (18 kDa). J Nucl Med. 2010;51(1):145–9.

    Article  Google Scholar 

  25. Zhu W, Li Q, Bai B, Conti PS, Leahy RM. Patlak image estimation from dual time-point list-mode PET data. IEEE Trans Med Imaging. 2014;33(4):913–24.

    Article  Google Scholar 

  26. Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol. 2016;61(15):5456–85.

    Article  Google Scholar 

  27. Strauss LG, Pan L, Cheng C, Haberkorn U, Dimitrakopoulou-Strauss A. Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies. J Nucl Med. 2011;52(3):379–85.

    Article  Google Scholar 

  28. Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169.

  29. Zhang X, Badawi RD, Cherry SR, Qi J. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol. 2018;63(13):767–70.

    Article  Google Scholar 

  30. Zhang Y, Hu P, Wu R, Gu Y, Chen S, Yu H, et al. The image quality, lesion detectability, and acquisition time of 18F-FDG total-body PET/CT in oncological patients. Eur J Nucl Med Mol Imaging. 2020;47(11):2507–15.

    Article  Google Scholar 

  31. Zhang X, Zhou J, Cherry SR, Badawi RD, Qi J. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol. 2017;62(6):2465–85.

    Article  CAS  Google Scholar 

  32. Liu G, Xu H, Hu P, Tan H, Zhang Y, Yu H, et al. Kinetic metrics of (18)F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur J Nucl Med Mol Imaging. 2021;48(8):2363–72.

  33. Liu G, Hu P, Yu H, Tan H, Zhang Y, Yin H, et al. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of (18)F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;48(8):2373–83.

  34. Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.

    CAS  PubMed  Google Scholar 

  35. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations J Cereb Blood Flow Metab. 1985;5(4):584–90.

    Article  CAS  Google Scholar 

  36. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.

    Article  CAS  Google Scholar 

  37. Feng T, Zhao Y, Shi H, Li H, Zhang X, Wang G, et al. Total-body quantitative parametric imaging of early kinetics of FDG. J Nucl Med. 2021;62(5):738–44.

  38. Pan L, Cheng C, Haberkorn U, Dimitrakopoulou-Strauss A. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data. Phys Med Biol. 2017;62(9):3566–81.

    Article  CAS  Google Scholar 

  39. Zuo Y, Sarkar S, Corwin MT, Olson K, Badawi RD, Wang G. Structural and practical identifiability of dual-input kinetic modeling in dynamic PET of liver inflammation. Phys Med Biol. 2019;64(17):175023.

    Article  Google Scholar 

  40. Brix G, Ziegler SI, Bellemann ME, Doll J, Schosser R, Lucht R, et al. Quantification of [(18)F]FDG uptake in the normal liver using dynamic PET: impact and modeling of the dual hepatic blood supply. J Nucl Med. 2001;42(8):1265–73.

    CAS  PubMed  Google Scholar 

  41. de Geus-Oei LF, Visser EP, Krabbe PF, van Hoorn BA, Koenders EB, Willemsen AT, et al. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies. J Nucl Med. 2006;47(6):945–9.

    PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the Shanghai “Rising Stars of Medical Talent”–Youth Development Program (HWJRS2019-72), the Training Program for Excellent Young Medical Talents of Zhongshan Hospital of Fudan University (2019ZSYQ28), the Shanghai Municipal Key Clinical Specialty Project (SHSLCZDZK03401), the Major Science and Technology Projects for Major New Drug Creation (2019ZX09302001), the Shanghai Science and Technology Committee Program (20DZ2201800), the Three-year Action Plan of Clinical Skills and Innovation of Shanghai Hospital Development Center (SHDC2020CR3079B), and the Next Generation Information Infrastructure Construction Project founded by Shanghai Municipal Commission of Economy and Informatization (201901014).

Author information

Authors and Affiliations

Authors

Contributions

G. Liu and H. Yu had full access to all the study data and take full responsibility for its integrity. G. Liu and H. Shi conceptualised and designed the study. G. Liu, P. Hu, D. Shi, H. Yin, and H. Tan acquired the data. G. Liu, P. Hu, Y. Hu, and Y. Zhang analysed and interpreted the data. G. Liu and H. Shi drafted the manuscript. All authors critically revised the manuscript. G. Liu, D. Shi, and Y. Hu did the statistical analysis. G. Liu, Y. Zhang, and H. Shi secured funding.

Corresponding author

Correspondence to Hongcheng Shi.

Ethics declarations

Ethics approval

The Ethics Committee of Zhongshan Hospital of Fudan University approved this study (approval number: IRB2015-098).

Consent to participate

Written informed consent was obtained from included subjects for participation of this study.

Consent for publication

The authors affirm that the human research participants provided informed consent for publication of the studied data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Miscellanea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Yu, H., Shi, D. et al. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging 49, 2493–2503 (2022). https://doi.org/10.1007/s00259-021-05500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05500-2

Keywords

Navigation