Skip to main content

Advertisement

Log in

ImmunoPET/NIRF/Cerenkov multimodality imaging of ICAM-1 in pancreatic ductal adenocarcinoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We dual-labeled an intercellular adhesion molecule-1 (ICAM-1) monoclonal antibody (mAb) and evaluated its effectiveness for lesion detection and surgical navigation in pancreatic ductal adenocarcinoma (PDAC) via multiple noninvasive imaging approaches, including positron emission tomography (PET), near-infrared fluorescence (NIRF), and Cerenkov luminescence imaging (CLI).

Methods

ICAM-1 expression in PDAC cell lines (BxPC-3 and AsPC-1) was assessed via flow cytometry and immunofluorescent staining. An ICAM-1 mAb labeled by IRDye 800CW and radionuclide zirconium-89 (denoted as [89Zr]Zr-DFO-ICAM-1-IR800) was synthesized. Its performance was validated via in vivo comparative PET/NIRF/CLI and biodistribution (Bio-D) studies in nude mice bearing subcutaneous BxPC-3/AsPC-1 tumors or orthotopic BxPC-3 tumor models using nonspecific IgG as an isotype control tracer.

Results

ICAM-1 expression was strong in the BxPC-3 and minimal in the AsPC-1 cell line. Both multimodality imaging and Bio-D data exhibited more prominent uptake of [89Zr]Zr-DFO-ICAM-1-IR800 in BxPC-3 tumors than in AsPC-1 tumors. The uptake of [89Zr]Zr-DFO-IgG-IR800 in BxPC-3 tumors was similar to that of [89Zr]Zr-DFO-ICAM-1-IR800 in AsPC-1 tumors. These results demonstrate the desirable affinity and specificity of [89Zr]Zr-DFO-ICAM-1-IR800 compared to [89Zr]Zr-DFO-IgG-IR800. Orthotopic BxPC-3 tumor foci could also be clearly delineated by [89Zr]Zr-DFO-ICAM-1-IR800. An intermodal match was achieved in the ICAM-1–targeted immunoPET/NIRF/CLI. The positive expression levels of ICAM-1 in BxPC-3 tumor tissue were further confirmed by immunohistopathology.

Conclusion

We successfully developed a dual-labeled ICAM-1–targeted tracer for PET/NIRF/CLI of PDAC that can facilitate better diagnosis and intervention of PDAC upon clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  2. Laeseke PF, Chen R, Jeffrey RB, Brentnall TA, Willmann JK. Combining in vitro diagnostics with in vivo imaging for earlier detection of pancreatic ductal adenocarcinoma: challenges and solutions. Radiology. 2015;277(3):644–61. https://doi.org/10.1148/radiol.2015141020.

    Article  PubMed  Google Scholar 

  3. Singhi AD, Koay EJ, Chari ST, Maitra A. Early detection of pancreatic cancer: opportunities and challenges. Gastroenterology. 2019;156(7):2024–40. https://doi.org/10.1053/j.gastro.2019.01.259.

    Article  PubMed  Google Scholar 

  4. Resovi A, Bani MR, Porcu L, Anastasia A, Minoli L, Allavena P, et al. Soluble stroma-related biomarkers of pancreatic cancer. Embo Mol Med. 2018;10(8):e8741. https://doi.org/10.15252/emmm.201708741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Loosen SH, Neumann UP, Trautwein C, Roderburg C, Luedde T. Current and future biomarkers for pancreatic adenocarcinoma. Tumor Biol. 2017;39(6):1010428317692231. https://doi.org/10.1177/1010428317692231.

    Article  CAS  Google Scholar 

  6. Jenkinson C, Elliott V, Menon U, Apostolidou S, Fourkala OE, Gentry-Maharaj A, et al. Evaluation in pre-diagnosis samples discounts ICAM-1 and TIMP-1 as biomarkers for earlier diagnosis of pancreatic cancer. J Proteome. 2015;113:400–2. https://doi.org/10.1016/j.jprot.2014.10.001.

    Article  CAS  Google Scholar 

  7. Mohamed A, Saad Y, Saleh D, Elawady R, Eletreby R, Kharalla AS, et al. Can serum ICAM 1 distinguish pancreatic cancer from chronic pancreatitis? Asian Pac J Cancer Prev. 2016;17(10):4671–5. https://doi.org/10.22034/APJCP.2016.17.10.4671.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schwaeble W, Kerlin M, Meyerzum Büschenfelde K, Dippold W. De novo expression of intercellular adhesion molecule 1(ICAM-1, CD54) in pancreas cancer. Int J Cancer. 1993;53(2):328–33. https://doi.org/10.1002/ijc.2910530226.

    Article  CAS  PubMed  Google Scholar 

  9. Shimoyama S, Gansauge F, Gansauge S, Widmaier U, Oohara T, Beger HG. Overexpression of intercellular adhesion molecule-1 (ICAM-1) in pancreatic adenocarcinoma in comparison with normal pancreas. Pancreas. 1997;14(2):181–6. https://doi.org/10.1097/00006676-199703000-00011.

    Article  CAS  PubMed  Google Scholar 

  10. Tempia-Caliera AA, Horvath LZ, Zimmermann A, Tihanyi TT, Korc M, Friess H, et al. Adhesion molecules in human pancreatic cancer. J Surg Oncol. 2002;79(2):93–100. https://doi.org/10.1002/jso.10053.

    Article  CAS  PubMed  Google Scholar 

  11. Hayes SH, Seigel GM. Immunoreactivity of ICAM-1 in human tumors, metastases and normal tissues. Int J Clin Exp Pathol. 2009;2(6):553–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in diagnostic and intraoperative molecular imaging of pancreatic cancer. Pancreas. 2018;47(6):675–89. https://doi.org/10.1097/MPA.0000000000001075.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cornelissen B, Knight JC, Mukherjee S, Evangelista L, Xavier C, Caobelli F, et al. Translational molecular imaging in exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging. 2018;45(13):2442–55. https://doi.org/10.1007/s00259-018-4146-5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. England CG, Hernandez R, Eddine SBZ, Cai W. Molecular imaging of pancreatic cancer with antibodies. Mol Pharm. 2016;13(1):8–24. https://doi.org/10.1021/acs.molpharmaceut.5b00626.

    Article  CAS  PubMed  Google Scholar 

  15. King J, Bouvet M, Singh G, Williams J. Improving theranostics in pancreatic cancer. J Surg Oncol. 2017;116(1):104–13. https://doi.org/10.1002/jso.24625.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Hong H, Engle JW, Yang Y, Theuer CP, Barnhart TE, et al. Positron emission tomography and optical imaging of tumor CD105 expression with a dual-labeled monoclonal antibody. Mol Pharm. 2012;9(3):645–53. https://doi.org/10.1021/mp200592m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Hong H, Severin GW, Engle JW, Yang Y, Goel S, et al. ImmunoPET and near-infrared fluorescence imaging of CD105 expression using a monoclonal antibody dual-labeled with 89Zr and IRDye 800CW. Am J Transl Res. 2012;4(3):333–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Houghton JL, Zeglis BM, Abdel-Atti D, Aggeler R, Sawada R, Agnew BJ, et al. Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc Natl Acad Sci U S A. 2015;112(52):15850. https://doi.org/10.1073/pnas.1506542112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei W, Jiang D, Lee HJ, Li M, Kutyreff CJ, Engle JW, et al. Development and characterization of CD54-targeted immunoPET imaging in solid tumors. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-04784-0.

  20. Li M, Jiang D, Barnhart TE, Cao T, Engle JW, Chen W, et al. Immuno-PET imaging of VEGFR-2 expression in prostate cancer with 89Zr-labeled ramucirumab. Am J Cancer Res. 2019;9(9):2037–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim MP, Evans DB, Wang H, Abbruzzese JL, Fleming JB, Gallick GE. Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc. 2009;4:1670–80. https://doi.org/10.1038/nprot.2009.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai L, Lu C, Long XY, Dai J, Zhou JX. Construction of orthotopic xenograft mouse models for human pancreatic cancer. Exp Ther Med. 2015;10:1033–8. https://doi.org/10.3892/etm.2015.2642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moreno JA, Sanchez A, Hoffman RM, Nur S, Lambros MP. Fluorescent orthotopic mouse model of pancreatic cancer. J Vis Exp. 2016;115:e54337. https://doi.org/10.3791/54337.

    Article  CAS  Google Scholar 

  24. Hong H, Zhang Y, Severin GW, Yang Y, Engle JW, Niu G, et al. Multimodality imaging of breast cancer experimental lung metastasis with bioluminescence and a monoclonal antibody dual-labeled with 89Zr and IRDye 800CW. Mol Pharm. 2012;9(8):2339–49. https://doi.org/10.1021/mp300277f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hernandez R, Sun H, England CG, Valdovinos HF, Ehlerding EB, Barnhart TE, et al. CD146-targeted immunoPET and NIRF imaging of hepatocellular carcinoma with a dual-labeled monoclonal antibody. Theranostics. 2016;6(11):1918–33. https://doi.org/10.7150/thno.15568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimastromatteo J, Brentnall T, Kelly KA. Imaging in pancreatic disease. Nat Rev Gastroenterol Hepatol. 2017;14(2):97–109. https://doi.org/10.1038/nrgastro.2016.144.

    Article  CAS  PubMed  Google Scholar 

  27. de Geus SWL, Boogerd LSF, Swijnenburg R, Mieog JSD, Tummers WSFJ, Prevoo HAJM, et al. Selecting tumor-specific molecular targets in pancreatic adenocarcinoma: paving the way for image-guided pancreatic surgery. Mol Imaging Biol. 2016;18(6):807–19. https://doi.org/10.1007/s11307-016-0959-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boonstra MC, De Geus SWL, Prevoo HAJM, Hawinkels LJAC, Van De Velde CJH, Kuppen PJK, et al. Selecting targets for tumor imaging: an overview of cancer-associated membrane proteins. Biomark Cancer. 2016;8:119–33. https://doi.org/10.4137/BIC.S38542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brooks KJ, Coleman EJ, Vitetta ES. The antitumor activity of an anti-CD54 antibody in SCID mice xenografted with human breast, prostate, non-small cell lung, and pancreatic tumor cell lines. Int J Cancer. 2008;123(10):2438–45. https://doi.org/10.1002/ijc.23793.

    Article  CAS  PubMed  Google Scholar 

  30. Deddens LH, van Tilborg GAF, van der Marel K, Hunt H, van der Toorn A, Viergever MA, et al. In vivo molecular MRI of ICAM-1 expression on endothelium and leukocytes from subacute to chronic stages after experimental stroke. Transl Stroke Res. 2017;8(5):440–8. https://doi.org/10.1007/s12975-017-0536-4.

    Article  CAS  PubMed Central  Google Scholar 

  31. Noonan J, Asiala SM, Grassia G, Macritchie N, Gracie K, Carson J, et al. In vivo multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy. Theranostics. 2018;8(22):6195–209. https://doi.org/10.7150/thno.28665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan F, Sun Y, Mao Y, Wu M, Deng Z, Li S, et al. Ultrasound molecular imaging of atherosclerosis for early diagnosis and therapeutic evaluation through leucocyte-like multiple targeted microbubbles. Theranostics. 2018;8(7):1879–91. https://doi.org/10.7150/thno.22070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mosley M, Torres JB, Allen D, Cornelissen B. Immuno-imaging of ICAM-1 in tumours by SPECT. Nucl Med Biol. 2020;84–85:73–9. https://doi.org/10.1016/j.nucmedbio.2020.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Wang M, Liu W, Peng X. Optical imaging of triple-negative breast cancer cells in xenograft athymic mice using an ICAM-1-targeting small-molecule probe. Mol Imaging Biol. 2019;21(5):835–41. https://doi.org/10.1007/s11307-018-01312-3.

    Article  CAS  PubMed  Google Scholar 

  35. Luo H, England CG, Goel S, Graves SA, Ai F, Liu B, et al. ImmunoPET and near-infrared fluorescence imaging of pancreatic cancer with a dual-labeled bispecific antibody fragment. Mol Pharm. 2017;14(5):1646–55. https://doi.org/10.1021/acs.molpharmaceut.6b01123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Q, Yan H, Jin Y, Wang Z, Huang W, Qiu J, et al. A novel plectin/integrin-targeted bispecific molecular probe for magnetic resonance/near-infrared imaging of pancreatic cancer. Biomaterials. 2018;183:173–84. https://doi.org/10.1016/j.biomaterials.2018.08.048.

    Article  CAS  PubMed  Google Scholar 

  37. Zettlitz KA, Tsai WK, Knowles SM, Kobayashi N, Donahue TR, Reiter RE, et al. Dual-modality immuno-PET and near-infrared fluorescence imaging of pancreatic cancer using an anti-prostate stem cell antigen Cys-diabody. J Nucl Med. 2018;59(9):1398–405. https://doi.org/10.2967/jnumed.117.207332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bertrand M, Abran M, Maafi F, Busseuil D, Merlet N, Mihalache-Avram T, et al. In vivo near-infrared fluorescence imaging of atherosclerosis using local delivery of novel targeted molecular probes. Sci Rep. 2019;9(1):2670. https://doi.org/10.1038/s41598-019-38970-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lohrmann C, O'Reilly EM, O'Donoghue JA, Pandit-Taskar N, Carrasquillo JA, Lyashchenko SK, et al. Retooling a blood-based biomarker: phase I assessment of the high-affinity CA19-9 antibody HuMab-5B1 for immuno-PET imaging of pancreatic cancer. Clin Cancer Res. 2019;25(23):7014–23. https://doi.org/10.1158/1078-0432.CCR-18-3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Faca VM, Song KS, Wang H, Zhang Q, Krasnoselsky AL, Newcomb LF, et al. A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med. 2008;5(6):e123. https://doi.org/10.1371/journal.pmed.0050123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma SK, Chow A, Monette S, Vivier D, Pourat J, Edwards KJ, et al. Fc-mediated anomalous biodistribution of therapeutic antibodies in immunodeficient mouse models. Cancer Res. 2018;78(7):1820–32. https://doi.org/10.1158/0008-5472.CAN-17-1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the Small Animal Imaging Facility (SAIF) at the Wisconsin Institutes for Medical Research (WIMR) in the University of Wisconsin–Madison for acquisition of imaging data.

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFA0909000), the University of Wisconsin–Madison, the National Institutes of Health (P30CA014520), the National Natural Science Foundation of China (Program for Young Scholars, Grant No. 81703468 and 82001878), and the Shanghai Rising-Star Program (Grant No. 20QA1406100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiyu Chen or Weibo Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging

Supplementary Information

ESM 1

Supplemental Fig. 1 Chromatograms from the assays for quality control of the tracer. Panels: a the ultraviolet–visible (UV–Vis) spectrum of DFO-ICAM-1-IR800 conjugate (1× PBS as blank control for baseline subtraction), with the typical absorption peak of protein at 280 nm and that of 800CW fluorophore at 774 nm in 1× PBS, respectively; b instant thin-layer chromatography (iTLC) for the tests of radiochemical purity and stability of [89Zr]Zr-DFO-ICAM-1-IR800 in 1× PBS solution (baseline offset of the chromatograms at 1 h and 3 h postpurification following the default of iTLC scanner software); radioactive (c) and UV (d; at 280 nm) size exclusion chromatography (SEC) for the test of integrity of [89Zr]Zr-DFO-ICAM-1-IR800. Supplemental Fig. 2 The typical in vivo positron emission tomography (PET) maximum-intensity projections (MIP) of nude mice bearing subcutaneous and orthotopic pancreatic ductal adenocarcinoma (PDAC) tumors (BxPC-3 and AsPC-1) at all time points. Groups: IR800/89Zr dual-labeled ICAM-1 monoclonal antibody ([89Zr]Zr-DFO-ICAM-1-IR800) injected into subcutaneous BxPC-3 model (Group 1); [89Zr]Zr-DFO-ICAM-1-IR800 injected into subcutaneous AsPC-1 model (Group 2); IR800/89Zr dual-labeled IgG control ([89Zr]Zr-DFO-IgG-IR800) injected into subcutaneous BxPC-3 model (Group 3); [89Zr]Zr-DFO-ICAM-1-IR800 injected into orthotopic BxPC-3 model (Group 4). Supplemental Fig. 3 The typical in vivo near-infrared fluorescent (NIRF) images of nude mice bearing subcutaneous and orthotopic pancreatic ductal adenocarcinoma (PDAC) tumors (BxPC-3 and AsPC-1) at all time points. Groups: IR800/89Zr dual-labeled ICAM-1 monoclonal antibody ([89Zr]Zr-DFO-ICAM-1-IR800) injected into subcutaneous BxPC-3 model (Group 1); [89Zr]Zr-DFO-ICAM-1-IR800 injected into subcutaneous AsPC-1 model (Group 2); IR800/89Zr dual-labeled IgG control ([89Zr]Zr-DFO-IgG-IR800) injected into subcutaneous BxPC-3 model (Group 3); [89Zr]Zr-DFO-ICAM-1-IR800 injected into orthotopic BxPC-3 model (Group 4). Supplemental Table 1 The quantitative uptake values withdrawn from the region of interest (ROI) in the in vivo positron emission tomography (PET) images of nude mice bearing subcutaneous and orthotopic pancreatic ductal adenocarcinoma (PDAC) tumors (BxPC-3 and AsPC-1) injected with IR800/89Zr dual-labeled ICAM-1 monoclonal antibody ([89Zr]Zr-DFO-ICAM-1-IR800) or IgG isotype control ([89Zr]Zr-DFO-IgG-IR800) at all time points. Supplemental Table 2 The radioactive ex vivo bio-distribution (Bio-D) of IR800/89Zr dual-labeled ICAM-1 monoclonal antibody ([89Zr]Zr-DFO-ICAM-1-IR800) or IgG control ([89Zr]Zr-DFO-IgG-IR800) in the tumors and major organs of subcutaneous or orthotopic pancreatic ductal adenocarcinoma (PDAC) models (BxPC-3 and AsPC-1) at 120 h postinjection (p.i.). Supplemental Table 3 The quantitative tumor-to-muscle ratio (TMR) of average radiant efficiency withdrawn from the region of interest (ROI) in the in vivo near-infrared fluorescent (NIRF) images of nude mice bearing subcutaneous and orthotopic pancreatic ductal adenocarcinoma (PDAC) tumors (BxPC-3 and AsPC-1) injected with IR800/89Zr dual-labeled ICAM-1 monoclonal antibody ([89Zr]Zr-DFO-ICAM-1-IR800) or IgG isotype control ([89Zr]Zr-DFO-IgG-IR800) at all time points. (DOCX 3290 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wei, W., Barnhart, T.E. et al. ImmunoPET/NIRF/Cerenkov multimodality imaging of ICAM-1 in pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 48, 2737–2748 (2021). https://doi.org/10.1007/s00259-021-05216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05216-3

Keywords

Navigation