Skip to main content

Advertisement

Log in

Textural features of hypoxia PET predict survival in head and neck cancer during chemoradiotherapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate whether textural features of tumour hypoxia, assessed with serial [18F]fluoromisonidazole (FMISO)-PET, were able to predict clinical outcome in patients with head and neck squamous cell carcinoma (HNSCC, T1-4, N+, M0) during chemoradiotherapy (CRT).

Methods

In a preliminary evaluation of a prospective trial, tumour hypoxia was evaluated in 29 patients via serial FMISO-PET before and during CRT. All patients received an initial [18F]fluorodeoxyglucose (FDG)-PET before CRT, and tumour regions were defined on this FDG-PET. The first-order metrics tumour-to-background ratio (TBRmean, TBRmax, TBRpeak), coefficient of variation, total lesion uptake and integral non-uniformity were calculated for all scans. Further, 3 second-order (textural) features from two grey-level matrices were calculated, as well as differential non-uniformity (udiff). Prognostic value was examined by median split for group separation (GS) in Kaplan-Meier estimates and correlated with overall survival (OS), quantified via log-rank tests (p ≤ 0.05) and group-relative hazard ratios (HR).

Results

Within a median follow-up of 29.6 months (95% CI: 16.8–48.0 months), no first-order metrics predicted OS with a significant GS (all p > 0.05) on any FMISO-PET scan. Only udiff before and in week 2 during CRT (p = 0.03, HR = 10.8 and p = 0.05, HR = 5.2) and non-uniformity from grey-level run length matrix in week 2 separated prognostic groups (p = 0.05, HR = 5.3); lower values were correlated with better OS. Further, the decrease in udiff from before CRT to week 2 was correlated with better OS (p = 0.04, HR = 9.4). FDG-PET before CRT did not predict outcome in any measure.

Conclusions

Textural features on FMISO-PET scans before CRT, in week 2 and, to a limited degree, the change of features during CRT, were able to identify head and neck squamous cell carcinoma patients with better OS, suggesting that a higher homogeneity of the degree of hypoxia in tumours could correlate with a better outcome after CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108. https://doi.org/10.3322/canjclin.55.2.74.

    Article  PubMed  Google Scholar 

  2. Pignon J, Bourhis J, Domenge C, Designé L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. Lancet. 2000;355:949–55. https://doi.org/10.1016/S0140-6736(00)90011-4.

    Article  CAS  PubMed  Google Scholar 

  3. Pignon J-P, le Maître A, Bourhis J. Meta-analyses of chemotherapy in head and neck cancer (MACH-NC): an update. Int J Radiat Oncol. 2007;69:S112–4. https://doi.org/10.1016/j.ijrobp.2007.04.088.

    Article  Google Scholar 

  4. Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol. 2005;77:18–24. https://doi.org/10.1016/j.radonc.2005.06.038.

    Article  PubMed  Google Scholar 

  5. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology. J Clin Oncol. 2006;24:2098–104. https://doi.org/10.1200/JCO.2005.05.2878.

    Article  PubMed  Google Scholar 

  6. Zips D, Zöphel K, Abolmaali N, Perrin R, Abramyuk A, Haase R, et al. Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol. 2012;105:21–8. https://doi.org/10.1016/j.radonc.2012.08.019.

    Article  PubMed  Google Scholar 

  7. Wiedenmann NE, Bucher S, Hentschel M, Mix M, Vach W, Bittner MI, et al. Serial [18F]-fluoromisonidazole PET during radiochemotherapy for locally advanced head and neck cancer and its correlation with outcome. Radiother Oncol. 2015;117:113–7. https://doi.org/10.1016/j.radonc.2015.09.015.

    Article  PubMed  Google Scholar 

  8. Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9:674–87. https://doi.org/10.1038/nrclinonc.2012.171.

    Article  CAS  PubMed  Google Scholar 

  9. Thorwarth D, Eschmann SM, Holzner F, Paulsen F, Alber M. Combined uptake of [18F]FDG and [18F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol. 2006;80:151–6. https://doi.org/10.1016/j.radonc.2006.07.033.

    Article  CAS  PubMed  Google Scholar 

  10. Rajendran JG, Mankoff DA, Sullivan FO, Peterson LM, Schwartz DL, Conrad EU, et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res. 2004;10:2245–52.

    Article  CAS  Google Scholar 

  11. Mönnich D, Welz S, Thorwarth D, Pfannenberg C, Reischl G, Mauz P-S, et al. Robustness of quantitative hypoxia PET image analysis for predicting local tumor control. Acta Oncol (Madr). 2015;54:1364–9. https://doi.org/10.3109/0284186X.2015.1071496.

    Article  Google Scholar 

  12. Zschaeck S, Haase R, Abolmaali N, Perrin R, Stützer K, Appold S, et al. Spatial distribution of FMISO in head and neck squamous cell carcinomas during radio-chemotherapy and its correlation to pattern of failure. Acta Oncol (Madr). 2015;54:1355–63. https://doi.org/10.3109/0284186X.2015.1074720.

    Article  CAS  Google Scholar 

  13. Bittner M-I, Wiedenmann N, Bucher S, Hentschel M, Mix M, Rücker G, et al. Analysis of relation between hypoxia PET imaging and tissue-based biomarkers during head and neck radiochemotherapy. Acta Oncol (Madr). 2016;55:1299–304. https://doi.org/10.1080/0284186X.2016.1219046.

    Article  CAS  Google Scholar 

  14. Bittner M-I, Wiedenmann N, Bucher S, Hentschel M, Mix M, Weber WA, et al. Exploratory geographical analysis of hypoxic subvolumes using 18F-MISO-PET imaging in patients with head and neck cancer in the course of primary chemoradiotherapy. Radiother Oncol. 2013;108:511–6. https://doi.org/10.1016/j.radonc.2013.06.012.

    Article  PubMed  Google Scholar 

  15. Eschmann SM, Paulsen F, Bedeshem C, Machulla H-J, Hehr T, Bamberg M, et al. Hypoxia-imaging with 18F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol. 2007;83:406–10. https://doi.org/10.1016/j.radonc.2007.05.014.

    Article  CAS  PubMed  Google Scholar 

  16. Löck S, Perrin R, Seidlitz A, Bandurska-Luque A, Zschaeck S, Zöphel K, et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol. 2017;124:533–40. https://doi.org/10.1016/j.radonc.2017.08.010.

    Article  PubMed  Google Scholar 

  17. Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44. https://doi.org/10.2967/jnumed.114.144055.

    Article  CAS  PubMed  Google Scholar 

  18. Orlhac F, Soussan M, Maisonobe J-A, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22. https://doi.org/10.2967/jnumed.113.129858.

    Article  CAS  PubMed  Google Scholar 

  19. Lucia F, Visvikis D, Desseroit M-C, Miranda O, Malhaire J-P, Robin P, et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45:768–86. https://doi.org/10.1007/s00259-017-3898-7.

    Article  PubMed  Google Scholar 

  20. Reuzé S, Orlhac F, Chargari C, Nioche C, Limkin E, Riet F, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017;8:43169–79. https://doi.org/10.18632/oncotarget.17856.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheng NM, Fang YHD, Lee LY, JTC C, Tsan DL, Ng SH, et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging. 2014;42:419–28. https://doi.org/10.1007/s00259-014-2933-1.

    Article  CAS  PubMed  Google Scholar 

  22. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges J-P, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78. https://doi.org/10.2967/jnumed.110.082404.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cheng N-M, Dean Fang Y-H, Tung-Chieh Chang J, Huang C-G, Tsan D-L, Ng S-H, et al. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med. 2013;54:1703–9. https://doi.org/10.2967/jnumed.112.119289.

    Article  CAS  PubMed  Google Scholar 

  24. Tsujikawa T, Rahman T, Yamamoto M, Yamada S, Tsuyoshi H, Kiyono Y, et al. 18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer. Ann Nucl Med. 2017;31:678–85. https://doi.org/10.1007/s12149-017-1199-7.

    Article  PubMed  Google Scholar 

  25. Cook GJR, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26. https://doi.org/10.2967/jnumed.112.107375.

    Article  PubMed  Google Scholar 

  26. Davnall F, Yip CSP, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89. https://doi.org/10.1007/s13244-012-0196-6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJR. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40. https://doi.org/10.1007/s00259-012-2247-0.

    Article  PubMed  Google Scholar 

  28. Zwanenburg A, Leger S, Vallières M, Löck S. Initiative for the IBS. Image biomarker standardisation initiative. Arxiv Prepr. 2016. https://doi.org/10.17195/candat.2016.08.1.

  29. Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–96. https://doi.org/10.1088/0031-9155/60/14/5471.

    Article  PubMed  Google Scholar 

  30. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54. https://doi.org/10.1007/s00259-014-2961-x.

    Article  CAS  PubMed  Google Scholar 

  31. Popescu LM, Matej S, Lewitt RM. Iterative image reconstruction using geometrically ordered subsets with list-mode data. 2004 IEEE Nucl Sci Symp Conf Rec. 2005;6, IEEE:3536–40. https://doi.org/10.1109/NSSMIC.2004.1466649.

    Article  Google Scholar 

  32. Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. 2006 IEEE Nucl Sci Symp. Conf Rec. 2006;3, IEEE:1715–22. https://doi.org/10.1109/NSSMIC.2006.354229.

    Article  Google Scholar 

  33. Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch C, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35:1989–99. https://doi.org/10.1007/s00259-008-0875-1.

    Article  PubMed  Google Scholar 

  34. Yip SSF, Aerts HJWL. Applications and limitations of radiomics. Phys Med Biol. 2016;61:R150–66. https://doi.org/10.1088/0031-9155/61/13/R150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. National Electrical Manufacturers Association. NEMA Performance measurements of scintillation cameras. Washington DC: Standards Publication NU 1-1994; 1994.

  36. Vallières M. MATLAB programming tools for radiomics analysis 2015. https://github.com/mvallieres/radiomics/ (accessed February 19, 2018).

  37. Antunes J, Viswanath S, Rusu M, Valls L, Hoimes C, Avril N, et al. Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study. Transl Oncol. 2016;9:155–62. https://doi.org/10.1016/j.tranon.2016.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Benjamini Y, Hochberg Y. Controlling the false discovery rate : a practical and powerful approach to multiple testing author. J R Stat Soc Ser B. 1995;57:289–300.

    Google Scholar 

  39. Bayer C, Shi K, Astner ST, Maftei C-A, Vaupel P. Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol. 2011;80:965–8. https://doi.org/10.1016/j.ijrobp.2011.02.049.

    Article  Google Scholar 

  40. Bayer C, Vaupel P. Acute versus chronic hypoxia in tumors. Strahlenther Onkol. 2012;188:616–27. https://doi.org/10.1007/s00066-012-0085-4.

    Article  CAS  PubMed  Google Scholar 

  41. Vaupel P, Shi K, Mayer A. Influence of diffusion limitations of PET tracers on imaging of tumor hypoxia. Strahlenther Onkol. 2018;194:S94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sörensen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology – Head and Neck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sörensen, A., Carles, M., Bunea, H. et al. Textural features of hypoxia PET predict survival in head and neck cancer during chemoradiotherapy. Eur J Nucl Med Mol Imaging 47, 1056–1064 (2020). https://doi.org/10.1007/s00259-019-04609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04609-9

Keywords

Navigation