Skip to main content
Log in

18F-PSMA-1007 multiparametric, dynamic PET/CT in biochemical relapse and progression of prostate cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Objectives

Aim of the present analysis is to investigate the biodistribution and pharmacokinetics of the recently clinically introduced radioligand 18F-PSMA-1007 in patients with biochemical recurrence or progression of prostate cancer (PC) by means of multiparametric (dynamic and whole-body) PET/CT.

Methods

Twenty-five (25) patients with PC biochemical relapse or progression (median age = 66.0 years) were enrolled in the analysis. The median PSA value was 1.2 ng/mL (range = 0.1–237.3 ng/mL) and the median Gleason score was 7 (range = 6–10). All patients underwent dynamic PET/CT (dPET/CT) scanning (60 min) of the pelvis and lower abdomen as well as whole-body PET/CT with 18F-PSMA-1007. PET/CT assessment was based on qualitative evaluation, SUV calculation, and quantitative analysis based on a two-tissue compartment model and fractal analysis.

Results

15/25 patients were PET-positive. Plasma PSA values in the 18F-PSMA-1007 positive group were higher (median = 3.6 ng/mL; range = 0.2–237.3 ng/mL) than in the 18F-PSMA-1007 negative group (median value = 0.7 ng/mL; range = 0.1–3.0 ng/mL). Semi-quantitative analysis in the PC lesions demonstrated a mean SUVaverage = 25.1 (median = 15.4; range = 3.5–119.2) and a mean SUVmax = 41.5 (median = 25.7; range = 3.8–213.2). Time–activity curves derived from dPET/CT revealed an increasing tracer accumulation during the 60 min of dynamic PET acquisition into the PC lesions, higher than in the urinary bladder and the colon. Significant correlations were observed between 18F-PSMA-1007 uptake (SUV), influx, and fractal dimension (FD).

Conclusions

18F-PSMA-1007 PET/CT could detect PC lesions in 60% of the patients of a mixed population, including also patients with very low PSA values. Higher PSA values were associated with a higher detection rate. Dynamic PET analysis revealed an increasing tracer uptake during the dynamic PET acquisition as well as high binding and internalization of the radiofluorinated PSMA ligand in the PC lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Afshar-Oromieh A, Zechmann CM, Malcher A, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:11–20.

    CAS  PubMed  Google Scholar 

  2. Afshar-Oromieh A, Avtzi E, Giesel FL, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42:197–209.

    CAS  PubMed  Google Scholar 

  3. Eiber M, Maurer T, Souvatzoglou M, et al. Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56:668–74.

    Google Scholar 

  4. Maurer T, Gschwend JE, Rauscher J, et al. Diagnostic efficacy of 68Gallium-PSMA-PET compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195(5):1436–43.

    Article  Google Scholar 

  5. Sachpekidis C, Kopka K, Eder M, et al. 68Ga-PSMA-11 Dynamic PET/CT imaging in primary prostate cancer. Clin Nucl Med. 2016;41(11):e473–9.

    PubMed  Google Scholar 

  6. Uprimny C, Kroiss AS, Decristoforo C, et al. 68Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging. 2017;44(6):941–9.

    CAS  PubMed  Google Scholar 

  7. Afshar-Oromieh A, Holland-Letz T, Giesel FL, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging. 2017;44(8):1258–68.

    PubMed  PubMed Central  Google Scholar 

  8. Pandey MK, Byrne JF, Jiang H, Packard AB, DeGrado TR. Cyclotron production of (68)Ga via the (68)Zn(p,n)(68)Ga reaction in aqueous solution. Am J Nucl Med Mol Imaging. 2014;4(4):303–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Freitag MT, Radtke JP, Afshar-Oromieh A, et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in 68Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging. 2017;44(5):776–87.

    CAS  PubMed  Google Scholar 

  10. Giesel FL, Hadaschik B, Cardinale J, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44:678–88.

    CAS  PubMed  Google Scholar 

  11. Giesel F, Will L, Lawal I, et al. Intra-individual comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study. J Nucl Med. 2018;59:1076–80.

    CAS  PubMed  Google Scholar 

  12. Giesel FL, Will L, Kesch C, et al. Biochemical recurrence of prostate cancer: initial results with [18F]PSMA-1007 PET/CT. J Nucl Med. 2018;59(4):632–5.

    CAS  PubMed  Google Scholar 

  13. Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M, et al. Diagnostic performance of 18F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(12):2055–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rahbar K, Afshar-Oromieh A, Bögemann M, et al. 18F-PSMA-1007 PET/CT at 60 and 120 minutes in patients with prostate cancer: biodistribution, tumour detection and activity kinetics.

  15. Giesel FL, Knorr K, Spohn F, et al. Detection efficacy of [18F]PSMA-1007 PET/CT in 251 Patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2019;60(3):362–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cardinale J, Martin R, Remde Y, et al. Procedures for the GMP-compliant production and quality control of [18F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals (Basel). 2017;10(4):77.

    Google Scholar 

  17. Sachpekidis C, Eder M, Kopka K, et al. (68)Ga-PSMA-11 dynamic PET/CT imaging in biochemical relapse of prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43(7):1288–99.

    CAS  PubMed  Google Scholar 

  18. Burger C, Buck A. Requirements and implementations of a flexible kinetic modeling tool. J Nucl Med. 1997;38:1818–23.

    CAS  PubMed  Google Scholar 

  19. Mikolajczyk K, Szabatin M, Rudnicki P, Grodzki M, Burger C. A Java environment for medical image data analysis: initial application for brain PET quantitation. Med Inf. 1998;23:207–14.

    CAS  Google Scholar 

  20. Sokoloff L, Smith CB. Basic principles underlying radioisotopic methods for assay of biochemical processes in vivo. In: Greitz T, Ingvar DH, Widén L, editors. The metabolism of the human brain studied with positron emission tomography. New York: Raven Press; 1983. p. 123–48.

    Google Scholar 

  21. Miyazawa H, Osmont A, Petit-Taboué MC, et al. Determination of 18F-fluoro-2-deoxy-D-glucose rate constants in the anesthetized baboon brain with dynamic positron tomography. J Neurosci Methods. 1993;50:263–72.

    CAS  PubMed  Google Scholar 

  22. Ohtake T, Kosaka N, Watanabe T, et al. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med. 1991;32:1432–8.

    CAS  PubMed  Google Scholar 

  23. Sachpekidis C, Bäumer P, Kopka K, et al. 68Ga-PSMA PET/CT in the evaluation of bone metastases in prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(6):904–12.

    CAS  PubMed  Google Scholar 

  24. Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Mikolajczyk K, Lehnert T, et al. On the fractal nature of positron emission tomography (PET) studies. World J Nucl Med. 2003;4:306–13.

    Google Scholar 

  25. Cornford P, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71:630–42.

    PubMed  Google Scholar 

  26. Hoeks CMA, Barentsz JO, Hambrock T, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261:46–66.

    PubMed  Google Scholar 

  27. Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol. 2011;12:181–91.

    PubMed  Google Scholar 

  28. Maurer T, Gschwend JE, Rauscher I, et al. Diagnostic efficacy of (68)Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risp prostate Cancer. J Urol. 2016;195(5):1436–43.

    Google Scholar 

  29. Sheikhbahaei S, Afshar-Oromieh A, Eiber M, et al. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging. 2017;44(12):2117–36.

    PubMed  Google Scholar 

  30. Uprimny C, Kroiss AS, Decristoforo C, et al. Early dynamic imaging in 68Ga- PSMA-11 PET/CT allows discrimination of urinary bladder activity and prostate cancer lesions. Eur J Nucl Med Mol Imaging. 2017;44(5):765–75.

    CAS  Google Scholar 

  31. Uprimny C, Kroiss AS, Fritz J, et al. Early PET imaging with [68]Ga-PSMA-11 increases the detection rate of local recurrence in prostate cancer patients with biochemical recurrence. Eur J Nucl Med Mol Imaging. 2017;44(10):1647–55.

    CAS  PubMed  Google Scholar 

  32. Sachpekidis C, Pan L, Hadaschik BA, et al. 68Ga-PSMA-11 PET/CT in prostate cancer local recurrence: impact of early images and parametric analysis. Am J Nucl Med Mol Imaging. 2018;8(5):351–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schäfers M, et al. German multicenter study investigating 177Lu- PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med. 2017;58:85–90.

    CAS  PubMed  Google Scholar 

  34. Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19(6):825–33.

    CAS  PubMed  Google Scholar 

  35. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4.

    CAS  PubMed  Google Scholar 

  36. Sathekge M, Bruchertseifer F, Knoesen O, et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2018;46:129–38.

    PubMed  PubMed Central  Google Scholar 

  37. Mandelbrot B. How long is the coast of Britain? Statistical selfsimilarity and fractional dimension. Science. 1967;156:636–8.

    CAS  PubMed  Google Scholar 

  38. Glenny RW, Robertson HT, Yamashiro S, Bassingthwaighte JB. Applications of fractal analysis to physiology. J Appl Physiol. 1991;70:2351–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sedivy R. Fractal tumours: their real and virtual images. Wien Klin Wochenschr. 1996;108:547–51.

    CAS  PubMed  Google Scholar 

  40. Di Ieva A, Grizzi F, Tschabitscher M, et al. (2010) correlation of microvascular fractal dimension with positron emission tomography [11C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res. 2010;80:267–73.

    PubMed  Google Scholar 

  41. Miwa K, Inubushi M, Wagatsuma K, Nagao M, Murata T, Koyama M, et al. FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. Eur J Radiol. 2014;83:715–9.

    PubMed  Google Scholar 

  42. Ben Bouallegue F, Tabaa YA, Kafrouni M, et al. Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys. 2017;44:4608–19.

    PubMed  Google Scholar 

  43. Tochigi T, Shuto K, Kono T, et al. Heterogeneity of glucose metabolism in esophageal cancer measured by fractal analysis of fluorodeoxyglucose positron emission tomography image: correlation between metabolic heterogeneity and survival. Dig Surg. 2017;34:186–91.

    CAS  PubMed  Google Scholar 

  44. Lopci E, Grizzi F, Russo C, et al. Early and delayed evaluation of solid tumours with 64Cu-ATSM PET/CT: a pilot study on semiquantitative and computer-aided fractal geometry analysis. Nucl Med Commun. 2017;38:340–6.

    PubMed  Google Scholar 

  45. Peitgen HO, Juergens H, Saupe D. Length, area and dimension: measuring complexity and scaling properties. In: Peitgen HO, Juergens H, Saupe D, editors. Chaos and fractals. 1st ed. New York: Springer; 1992. p. 192–219.

    Google Scholar 

  46. Dimitrakopoulou-Strauss A, Strauss LG, Burger C, Rühl A, Irngartinger G, Stremmel W, et al. Prognostic aspects of 18F-FDG PET kinetics in patients with metastatic colorectal carcinoma receiving FOLFOX chemotherapy. J Nucl Med. 2004;45:1480–7.

    CAS  PubMed  Google Scholar 

  47. Sachpekidis C, Hillengass J, Goldschmidt H, Wagner B, Haberkorn U, Kopka K, et al. Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation. Eur J Nucl Med Mol Imaging. 2017;44:50–62.

    CAS  PubMed  Google Scholar 

  48. Castello A, Russo C, Grizzi F, Qehajaj D, Lopci E. Prognostic impact of intratumoral heterogeneity based on fractal geometry analysis in operated NSCLC patients. Mol Imaging Biol. 2018. https://doi.org/10.1007/s11307-018-1299-3.

    Google Scholar 

  49. Woythal N, Arsenic R, Kempkensteffen C, Miller K, Janssen JC, Huang K, et al. Immunohistochemical validation of PSMA expression measured by (68)Ga-PSMA PET/CT in primary prostate cancer. J Nucl Med. 2018;59(2):238–43.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Sachpekidis.

Ethics declarations

Conflict of interest

The clinical development of 18F-PSMA-1007 is partly funded by a grant of the Federal Ministry of Education and Research (BMBF), project ProstaPET (2U2WTZKOREA-021; no. 01DR17031A).

Uwe Haberkorn and Klaus Kopka are inventors within a patent application for PSMA-1007. Other potential declarations of interest relevant to this article do not exist.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology – Genitourinary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachpekidis, C., Afshar-Oromieh, A., Kopka, K. et al. 18F-PSMA-1007 multiparametric, dynamic PET/CT in biochemical relapse and progression of prostate cancer. Eur J Nucl Med Mol Imaging 47, 592–602 (2020). https://doi.org/10.1007/s00259-019-04569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04569-0

Keywords

Navigation