Skip to main content
Log in

Test–retest repeatability of myocardial blood flow and infarct size using 11C-acetate micro-PET imaging in mice

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Global and regional responses of absolute myocardial blood flow index (iMBF) are used as surrogate markers to assess response to therapies in coronary artery disease. In this study, we assessed the test–retest repeatability of iMBF imaging, and the accuracy of infarct sizing in mice using 11C-acetate PET.

Methods

11C-Acetate cardiac PET images were acquired in healthy controls, endothelial nitric oxide synthase (eNOS) knockout transgenic mice, and mice after myocardial infarction (MI) to estimate global and regional iMBF, and myocardial infarct size compared to 18F-FDG PET and ex-vivo histology results.

Results

Global test–retest iMBF values had good coefficients of repeatability (CR) in healthy mice, eNOS knockout mice and normally perfused regions in MI mice (CR = 1.6, 2.0 and 1.5 mL/min/g, respectively). Infarct size measured on 11C-acetate iMBF images was also repeatable (CR = 17 %) and showed a good correlation with the infarct sizes found on 18F-FDG PET and histopathology (r 2 > 0.77; p < 0.05).

Conclusion

11C-Acetate micro-PET assessment of iMBF and infarct size is repeatable and suitable for serial investigation of coronary artery disease progression and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schelbert HR. Anatomy and physiology of coronary blood flow. J Nucl Cardiol. 2010;17:545–54.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Park Y, Yang J, Zhang H, Chen X, Zhang C. Effect of PAR2 in regulating TNF- and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol. 2011;106:111–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Suda K, Eom J, Jaw JE, Mui T, Bai N, Or C, et al. Endotoxin-induced cardiovascular dysfunction in mice: effect of simvastatin. J Appl Physiol. 2011;111:1118–24.

    Article  CAS  PubMed  Google Scholar 

  4. Croteau E, Renaud JM, Archer C, Klein R, DaSilva JN, Ruddy TD, et al. Beta2-adrenergic stress evaluation of coronary endothelial-dependent vasodilator function in mice using 11C-acetate micro-PET imaging of myocardial blood flow and oxidative metabolism. EJNMMI Res. 2014;4:68.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ahmadi A, Thorn SL, Alarcon EI, Kordos M, Padavan DT, Hadizad T, et al. PET imaging of a collagen matrix reveals its effective injection and targeted retention in a mouse model of myocardial infarction. Biomaterials. 2015;49:18–26.

    Article  CAS  PubMed  Google Scholar 

  6. Crisostomo V, Baez-Diaz C, Maestre J, Garcia-Lindo M, Sun F, Casado JG, et al. Delayed administration of allogeneic cardiac stem cell therapy for acute myocardial infarction could ameliorate adverse remodeling: experimental study in swine. J Transl Med. 2015;13:156.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Katare R, Caporali A, Emanueli C, Madeddu P. Benfotiamine improves functional recovery of the infarcted heart via activation of pro-survival G6PD/Akt signaling pathway and modulation of neurohormonal response. J Mol Cell Cardiol. 2010;49:625–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Yu X, Tesiram YA, Towner RA, Abbott A, Patterson E, Huang S, et al. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI). Cardiovasc Diabetol. 2007;6:6.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Renaud JM, DaSilva JN, Beanlands RS, DeKemp RA. Characterizing the normal range of myocardial blood flow with 82rubidium and 13N-ammonia PET imaging. J Nucl Cardiol. 2013;20:578–91.

    Article  PubMed  Google Scholar 

  10. Timmer SA, Lubberink M, Germans T, Gotte MJ, ten Berg JM, ten Cate FJ, et al. Potential of [11C]acetate for measuring myocardial blood flow: studies in normal subjects and patients with hypertrophic cardiomyopathy. J Nucl Cardiol. 2010;17:264–75.

    Article  CAS  PubMed  Google Scholar 

  11. Herrero P, Kim J, Sharp TL, Engelbach JA, Lewis JS, Gropler RJ, et al. Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET. J Nucl Med. 2006;47:477–85.

    CAS  PubMed  Google Scholar 

  12. Renaud JM, Lamoureux M, Kordos M, Mason S, Dasilva JN, Beanlands RS, et al. 11C-acetate for myocardial blood flow quantification in mice with small animal PET imaging. Mol Imaging Biol. 2010;12 Suppl 1:S200–1

  13. Krueger MA, Huke SS, Glenny RW. Visualizing regional myocardial blood flow in the mouse. Circ Res. 2013;112:e88–97.

    Article  CAS  PubMed  Google Scholar 

  14. Degabriele NM, Griesenbach U, Sato K, Post MJ, Zhu J, Williams J, et al. Critical appraisal of the mouse model of myocardial infarction. Exp Physiol. 2004;89:497–505.

    Article  PubMed  Google Scholar 

  15. Dumouchel T, Thorn S, Kordos M, DaSilva J, Beanlands RS, deKemp RA. A three-dimensional model-based partial volume correction strategy for gated cardiac mouse PET imaging. Phys Med Biol. 2012;57:4309–34.

    Article  PubMed  Google Scholar 

  16. Thorn SL, Dekemp RA, Dumouchel T, Klein R, Renaud JM, Wells RG, et al. Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: evaluation of tracer kinetics in a type 1 diabetes model. J Nucl Med. 2013;54:1637–44.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng JC, Shoghi K, Laforest R. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals. Med Phys. 2012;39:1029–41.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol. 2010;17:600–16.

    Article  PubMed  Google Scholar 

  19. Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34:1765–74.

    Article  PubMed  Google Scholar 

  20. van den Hoff J, Burchert W, Borner AR, Fricke H, Kuhnel G, Meyer GJ, et al. [1-11C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med. 2001;42:1174–82.

    PubMed  Google Scholar 

  21. Klein R, Beanlands RS, deKemp RA. Quantification of myocardial blood flow and flow reserve: technical aspects. J Nucl Cardiol. 2010;17:555–70.

    Article  PubMed  Google Scholar 

  22. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. American Heart Association Writing Group on myocardial segmentation and registration for cardiac imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging. 2002;18:539–42.

  23. Nascimento DS, Valente M, Esteves T, de Pina Mde F, Guedes JG, Freire A, et al. MIQuant – semi-automation of infarct size assessment in models of cardiac ischemic injury. PLoS One. 2011;6:e25045.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, et al. Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. J Appl Physiol. 2007;102:2104–11.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Vandervelde S, van Amerongen MJ, Tio RA, Petersen AH, van Luyn MJ, Harmsen MC. Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovasc Pathol. 2006;15:83–90.

    Article  PubMed  Google Scholar 

  26. Lamoureux M, Thorn S, Dumouchel T, Renaud JM, Klein R, Mason S, et al. Uniformity and repeatability of normal resting myocardial blood flow in rats using [13N]-ammonia and small animal PET. Nucl Med Commun. 2012;33:917–25.

    Article  PubMed  Google Scholar 

  27. Wyss CA, Koepfli P, Mikolajczyk K, Burger C, von Schulthess GK, Kaufmann PA. Bicycle exercise stress in PET for assessment of coronary flow reserve: repeatability and comparison with adenosine stress. J Nucl Med. 2003;44:146–54.

    PubMed  Google Scholar 

  28. Efseaff M, Klein R, Ziadi MC, Beanlands RS, de Kemp RA. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. J Nucl Cardiol. 2012;19:997–1006.

    Article  PubMed  Google Scholar 

  29. Rajasingh J, Thangavel J, Siddiqui MR, Gomes I, Gao XP, Kishore R, et al. Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One. 2011;6:e22550.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Winter EM, Grauss RW, Hogers B, van Tuyn J, van der Geest R, Lie-Venema H, et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007;116:917–27.

    Article  CAS  PubMed  Google Scholar 

  31. Toeg HD, Tiwari-Pandey R, Seymour R, Ahmadi A, Crowe S, Vulesevic B, et al. Injectable small intestine submucosal extracellular matrix in an acute myocardial infarction model. Ann Thorac Surg. 2013;96:1686–94.

    Article  PubMed  Google Scholar 

  32. Sam F, Sawyer DB, Chang DL, Eberli FR, Ngoy S, Jain M, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol Heart Circ Physiol. 2000;279:H422–8.

    CAS  PubMed  Google Scholar 

  33. Geelen T, Paulis LE, Coolen BF, Nicolay K, Strijkers GJ. Contrast-enhanced MRI of murine myocardial infarction – part I. NMR Biomed. 2012;25:953–68.

    Article  PubMed  Google Scholar 

  34. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.

    Article  PubMed  Google Scholar 

  35. Mourik JE, van Velden FH, Lubberink M, Kloet RW, van Berckel BN, Lammertsma AA, et al. Image derived input functions for dynamic High Resolution Research Tomograph PET brain studies. Neuroimage. 2008;43:676–86.

    Article  PubMed  Google Scholar 

  36. Raher MJ, Thibault H, Poh KK, Liu R, Halpern EF, Derumeaux G, et al. In vivo characterization of murine myocardial perfusion with myocardial contrast echocardiography: validation and application in nitric oxide synthase 3 deficient mice. Circulation. 2007;116:1250–7.

    Article  PubMed  Google Scholar 

  37. Guarini G, Ohanyan VA, Kmetz JG, DelloStritto DJ, Thoppil RJ, Thodeti CK, et al. Disruption of TRPV1-mediated coupling of coronary blood flow to cardiac metabolism in diabetic mice: role of nitric oxide and BK channels. Am J Physiol Heart Circ Physiol. 2012;303:H216–23.

    Article  CAS  PubMed  Google Scholar 

  38. Kober F, Iltis I, Cozzone PJ, Bernard M. Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med. 2005;53:601–6.

    Article  PubMed  Google Scholar 

  39. Makowski M, Jansen C, Webb I, Chiribiri A, Nagel E, Botnar R, et al. First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magn Reson Med. 2010;64:1592–8.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res. 2011;109:894–906.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Poulin E, Lebel R, Croteau E, Blanchette M, Tremblay L, Lecomte R, et al. Conversion of arterial input functions for dual pharmacokinetic modeling using Gd-DTPA/MRI and 18F-FDG/PET. Magn Reson Med. 2013;69:781–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Keegan Flowers for the synthesis of 11C-acetate, Christine Archer for technical support with micro-PET imaging, and Richard Seymour for his surgical contributions.

Compliance with ethical standards

Funding

This work was supported by a grant from the Canadian Institutes of Health Research (MOP-79311), an Ontario Research Fund grant for the Institute of Cardiovascular Therapeutics (ORF-RE-02-038), and a Heart and Stroke Foundation of Ontario grant for the Molecular and Functional Imaging Program (PRG-6242).

E.C. was supported by Ernest and Margaret Ford Endowed Research Funds.

R.S.B. is a Career Investigator supported by the HSFO and Tier 1 Chair in Cardiovascular Research supported by the University of Ottawa.

R.S.B. and R.dK. received grant funding from a government/industry research program (with GE Healthcare, Nordion, Lantheus Medical Imaging, and Jubilant DraxImage).

Conflicts of interest

E.C., M.M. and J.D.S. have no disclosures related to this work.

J.M.R., R.K. and R.dK. receive royalties from the sales of FlowQuant© software.

R.S.B. is a consultant for Lantheus Medical Imaging.

J.M.R., R.K., R.S.B. and R.dK. are consultants for Jubilant DraxImage.

Ethical approval

All experiments were conducted with the approval of the University of Ottawa Animal Care Committee and in accordance with the guidelines of the Canadian Council on Animal Care. All applicable international guidelines on the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. deKemp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croteau, E., Renaud, J.M., McDonald, M. et al. Test–retest repeatability of myocardial blood flow and infarct size using 11C-acetate micro-PET imaging in mice. Eur J Nucl Med Mol Imaging 42, 1589–1600 (2015). https://doi.org/10.1007/s00259-015-3111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3111-9

Keywords

Navigation