Skip to main content

Advertisement

Log in

Advantage of FMISO-PET over FDG-PET for predicting histological response to preoperative chemotherapy in patients with oral squamous cell carcinoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Hypoxia, a prognostic factor in many types of cancer, can be detected by 18F-fluoromisonidazole (FMISO) positron emission tomography (PET). It is unclear whether hypoxia reflects the response to chemotherapy in patients with oral squamous cell carcinoma (OSCC). The correlations of FMISO-PET and FDG-PET with histological response to preoperative chemotherapy were therefore assessed in patients with OSCC.

Methods

This study enrolled 22 patients with OSCC undergoing preoperative chemotherapy. The T-stages were T2 in 6 patients, T3 in 3, and T4a in 13, and the N-stages were N0 in 14 patients, N1 in 3, and N2 in 5. Each patient was evaluated by both FMISO-PET and FDG-PET before surgery, and the maximum standardized uptake value (SUVmax) of FDG- and FMISO-PET and tumor-muscle ratio (TMR) of FMISO-PET were measured. The threshold for the hypoxic volume based on TMR was set at 1.25. The histological response to preoperative chemotherapy was evaluated using operative materials.

Results

FMISO-PET and FDG-PET detected uptake by primary OSCCs in 15 (68 %) and 21 (95 %) patients, respectively, and median SUVmaxs of FMISO- and FDG-PET in the primary site were 2.0 (range, 1.3–3.5) and 16.0 (range, 1.0–32.2), respectively. The median of FMISO TMR was 1.5 (range, 0.99–2.96). There were five cases whose FMISO TMR was less than 1.25. Histological evaluation showed good response to preoperative chemotherapy in 7 patients (32 %) and poor response in 15 (68 %). Good response was significantly more prevalent in patients with negative than positive FMISO uptake (P < 0.001) and without the hypoxic area evaluated by FMISO-PET TMR (P = 0.04), whereas FDG uptake was not significantly correlated with response to chemotherapy response. Multivariate logistic regression analysis showed that FMISO uptake was an independent significant predictor of response to preoperative chemotherapy (P = 0.03, odds ratio = 0.06, 95 % confidence interval = 0.004–0.759).

Conclusions

An advantage of FMISO-PET over FDG-PET for predicting histological response to preoperative chemotherapy in patients with OSCC was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang W, Lee NY, Georgi JC, Narayanan M, Guillem J, Schöder H, et al. Pharmacokinetic analysis of hypoxia 18F-fluoromisonidazole dynamic PET in head and neck cancer. J Nucl Med. 2010;51:37–45.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Janssen HL, Haustermans KM, Balm AJ, Begg AC. Hypoxia in head and neck cancer: How much, how important? Head Neck. 2005;27:622–38.

    Article  PubMed  CAS  Google Scholar 

  3. Roh JL, Cho KJ, Kwon GY, Ryu CH, Chang HW, Choi SH, et al. The prognostic value of hypoxia markers in T2-staged oral tongue cancer. Oral Oncol. 2009;45:63–8.

    Article  PubMed  CAS  Google Scholar 

  4. Yamane T, Kikuchi M, Shinohara S, Senda M. Reduction of [18F]-Fluoromisonidazole uptake after neoadjuvant chemotherapy for head and neck squamous cell carcinoma. Mol Imaging Biol. 2011;13:227–31.

    Article  PubMed  Google Scholar 

  5. Miyagaki H, Yamasaki M, Miyata H, Takahashi T, Kurokawa Y, Nakajima K, et al. Overexpression of PETK1 predicts resistance to chemotherapy in patients with oesophageal squamous cell carcinoma. Br J Cancer. 2012;106:947–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Kong CB, Byun BH, Lim I, Choi CW, Lim SM, Song WS, et al. 18F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Mol Imaging. 2013;40:728–36.

    Article  CAS  Google Scholar 

  7. Miyawaki A, Ikeda R, Hijioka H, Ishida T, Ushiyama N, Nozoe E, et al. SUVmax of FDG-PET correlates with the effect of neoadjuvant chemoradiotherapy for oral squamous cell carcinoma. Oncol Rep. 2010;23:1205–12.

    Article  PubMed  Google Scholar 

  8. Kitagawa Y, Sadato N, Azuma H, Ogasawara T, Yoshida M, Ishii Y, et al. FDG PET to evaluate combination intra-arterial chemotherapy and radiotherapy of head and neck neoplasms. J Nucl Med. 1999;40:1132–7.

    PubMed  CAS  Google Scholar 

  9. Swisher SG, Erasmus J, Maish M, Correa AM, Macapinlac H, Ajani JA, et al. 2-fluoro-2-deoxy-d-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer. 2004;101:1776–85.

    Article  PubMed  Google Scholar 

  10. Lowe VJ, Dunphy FR, Varvares M, Kim H, Wittry M, Dunphy CH, et al. Evaluation of chemotherapy response in patients with advanced head and neck cancer using [F-18] fluorodeoxyglucose positron emission tomography. Head Neck. 1997;19:666–74.

    Article  PubMed  CAS  Google Scholar 

  11. Kitagawa Y, Sano K, Nishizawa S, Nakamura M, Ogasawara T, Sadato N, et al. FDG PET for prediction of tumor aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med. 2003;30:63–71.

    Article  CAS  Google Scholar 

  12. Han MW, Lee HJ, Cho KJ, Kim JS, Roh JL, Choi SH, et al. Pole of FDG-pet as a biological marker for predicting the hypoxic status of tongue cancer. Head Neck. 2012;34:1395–402.

    Article  PubMed  Google Scholar 

  13. Dierckx RA, Van de Wiele C. FDG uptake, a surrogate of tumour hypoxia? Eur J Nucl Med Imaging. 2008;35:1544–9.

    Article  CAS  Google Scholar 

  14. Toma-Dasu I, Dasu A, Brahme A. Quantifying tumour hypoxia by PET imaging- a theoretical analysis. Adv Exp Med Biol. 2009;645:267–72.

    Article  PubMed  Google Scholar 

  15. Busk M, Horsman MR, Jakobsen S, Bussink J, van der Kogel A, Overgaard J. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging. 2008;35:2294–303.

    Article  PubMed  CAS  Google Scholar 

  16. Eschmann SM, Paulsen F. Bedes ing with 18F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol. 2007;83:406–10.

    Article  PubMed  CAS  Google Scholar 

  17. Koh WJ, Rasey JS, Evans ML, Grierson JR, Lewellen TK, Graham MM, et al. Imaging of tumor hypoxia in human tumors with [F-18] fluoromisonidazole. Int J Radiat Oncol Biol Phys. 1992;22:199–212.

    Article  PubMed  CAS  Google Scholar 

  18. Rasey JS, Koh WJ, Fvans ML, Peterson LM, Lewellen TK, Michael Graham MM, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [F-18] fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys. 1996;36:417–28.

    Article  PubMed  CAS  Google Scholar 

  19. Rajendran JG, Wilson DC, Conrad EU, Peterson LK, Bruckner JD, Rasey JS, et al. [18F]FMISO and [18F] FDG PET imaging in soft tissue sarcoma: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med. 2003;30:695–704.

    Article  CAS  Google Scholar 

  20. Jansen JFA, Schöder H, Lee NY, Wang Y, Pfister DG, Fury MG, et al. Noninvasive assessment of tumor microenviroment using dynamic contrast-enhanced magnetic resonance imaging and 18F-fluoromisonidazole positron emission tomography imaging in neck nodal metastases. Int J Radiat Oncol Biol Phys. 2010;77:1403–10.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee ST, Scott AM. Hypoxia positron emission tomography imaging with 18-fluoromisonidazole. Semin Nucl Med. 2007;37:451–61.

    Article  PubMed  Google Scholar 

  22. Okamoto S, Shiga T, Yasuda K, Ito YM, Magota K, Kasai K, et al. High reproducibility of tumor hypoxia evaluated by 18 F-Fluoromisonidazole PET for head and neck cancer. J Nucl Med. 2013;54:201–7.

    Article  PubMed  CAS  Google Scholar 

  23. Sato J, Kitagawa Y, Yamazaki Y, Hata H, Okamoto S, Shiga T, et al. FMISO-PET uptake is correlated with HIF-1α expression in oral squamous cell carcinoma. J Nucl Med. 2013;54:1060–5.

    Article  PubMed  CAS  Google Scholar 

  24. Harada H, Inoue M, Itasaka S, Hirota K, Morinibu A. Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumour blood vessels. Nat Commun. 2012;3:783–92.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nordsmark M, Bentzen S, Rudat V, Brizel D, Lartigau E, Stadler P, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol. 2005;77:18–24.

    Article  PubMed  Google Scholar 

  26. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  27. Lin PY, Yu CH, Wang JT, et al. Expression of hypoxia-inducible factor-1α is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. J Oral Pathol Med. 2008;37:18–25.

    Article  PubMed  Google Scholar 

  28. Sasabe E, Zhou X, Li D, Oku N, Yamamoto T, Osaki T. The involvement of hypoxia-inducible factor-αin the susceptibility to γ-rays and chemotherapeutic drugs of oral squamous cell carcinoma cells. Int J Cancer. 2006;120:268–77.

    Article  Google Scholar 

  29. Sasabe E, Tatemoto Y, Li D, Yamamoto T, Osaki T. Mechanism of HIF-1α-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci. 2005;96:394–402.

    Article  PubMed  CAS  Google Scholar 

  30. van den Broek GB, Wildeman M, Rasch CRN, Armstrong N, Schuuring E, Begg AC, et al. Molecular markers predict outcome in squamous cell carcinoma of the head and neck after concomitant cisplatin-based chemoradiation. Int J Cancer. 2009;124:2643–50.

    Article  PubMed  Google Scholar 

  31. Barnes L, Eveson J, Reichart P, Barnes L, Sidransky D. World Health Organization Classification of Tumors, Pathology and Genetics of Tumors of the Head and Neck. International Agency for Research on Cancer. Lyon: IARC Press; 2005.

    Google Scholar 

  32. Sobin LH, Wittenkind CH. TNM Classification of Malignant Tumors. 5th ed. New York: John Wiley & Sons, Inc; 1997. p. 17–42.

    Google Scholar 

  33. Yamamoto E, Kohama G, Sunakawa H, Iwai M, Hiratsuka H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer. 1983;51:2175–80.

    Article  PubMed  CAS  Google Scholar 

  34. Japan Society for Head and Neck Cancer. General rules for clinical studies on head and neck cancer. 5th ed. Tokyo: KANEHARS & Co., LTD; 2012. p. 68.

    Google Scholar 

  35. Fillies T, Werkmeister R, van Diest P, Brandt B, Joos U, Buerger H. HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinoma of the oral floor. BMC Cancer. 2005;5:84–91.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yoshida S, Ito D, Nagumo T, Shirota T, Hatori M, Shintani S. Hypoxia induces resistance to 5-fluorouracil in oral cancer cells via G1 phase cell cycle arrest. Oral Oncol. 2009;45:109–15.

    Article  Google Scholar 

  37. Song X, Liu X, Chi W, Wei L, Wang X, Yu J. Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1 alpha gene. Cancer Chemother Pharmacol. 2006;58:776–84.

    Article  PubMed  CAS  Google Scholar 

  38. Schliephake H. Prognostic relevance of molecular markers of oral cancer-A review. Int J Oral Maxillofac Surg. 2003;32:233–45.

    Article  PubMed  CAS  Google Scholar 

  39. Nemeth Z, Velich N, Bogdan S, Ujpál M, Szabó G, Suba ZS. The prognostic role of clinical, morphological and molecular markers in oral squamous cell tumors. Neoplasma. 2005;52:95–102.

    PubMed  CAS  Google Scholar 

  40. Olive PL, Durand RE. During and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev. 1994;13:121–38.

    Article  PubMed  CAS  Google Scholar 

  41. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev. 1997;13:139–68.

    Article  Google Scholar 

  42. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto SP, Colgan SP. Hypoxia-inducible factor-1-dependdent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62:3387–94.

    PubMed  CAS  Google Scholar 

  43. Birner P, Schindl M, Obermair A, Breitenecker G, Oberhuber G. Expression of hypoxia-inducible factor 1α in epitherial ovarian tumors: its impact on prognosis and on response to chemoptherapy. Clin Cancer Res. 2001;7:1661–8.

    PubMed  CAS  Google Scholar 

  44. Yamazaki M, Miyata H, Fujiwara Y, Takiguchi S, Nakajima K, Nishida T, et al. p53 genotype predicts response to chemotherapy in patients with squamous cell carcinoma of the wsophagus. Ann Surg Oncol. 2010;17:634–42.

    Article  Google Scholar 

  45. Moreno-Galindo C, Hermsen M, Graćia-Pedreo JM, Fresno MF, Suá C, Rodrigo JP. P27 and BCL2 expression predicts response to chemotherapy in head and neck squamous cell carcinomas. Oral Oncol. 2014;50:128–34.

    Article  PubMed  CAS  Google Scholar 

  46. Hawkins DS, Rajendran JG, Conrad 3rd EU, Bruckner JD. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer. 2002;94:3277–84.

  47. Lee NY, Mechalakos JG, Nehmeh S, Zhixiong Lin Z, Squire OD, Cai S, et al. Reproducibility of intratumor distribution of (18) F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;70:235–42.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tian M, Zhang H, Nakasone Y, Mogi K, Endo K. Expression of Glut-1 and Glut-3 in untreated oral squamous cell carcinoma compared with FDG accumulation on a PET study. Eur J Nucl Med Mol Imaging. 2004;31:5–12.

    Article  PubMed  CAS  Google Scholar 

  49. Ak I, Stokkel MP, Pauwels EK. Positron emission tomography with 2-[18F] fluoro-2-deoxy-D-glucose in oncology. Part II. The clinical value in detecting and staging primary tumours. J Cancer Res Clin Oncol. 2000;126:560–74.

    Article  PubMed  CAS  Google Scholar 

  50. Kalz S, Kalzova N, Liao SY, Lwman N, Stanbridge EJ. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochem Biophys Acta. 2009;1795:162–72.

    Google Scholar 

  51. Silva P, Slevin NJ, Sloan P, Valentine H, Cresswell J, Ryder D, et al. Prognostic significance of tumor hypoxia inducible factor-1alpha expression for outcome after radiotherapy in oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2008;72:1551–9.

    Article  PubMed  CAS  Google Scholar 

  52. Zimny M, Gagel B, DiMartino E, Hamacher K, Coenen H, Westhofen M, et al. FDG-a marker of tumor hypoxia? A comparison with [(18)Fluoromisonidazole and pO2-polarography in metastatic head and neck cancer. Eur J Nucl Med Mol Imaging. 2006;33:1426–31.

    Article  PubMed  CAS  Google Scholar 

  53. Rajendran JG, Mankoff DA, O’Sullivan F, Peterson LM, Schwartz DL, Conrad EU, et al. Hypoxia and glucose metabolism in malignant tumor: evaluation by [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res. 2004;10:2245–52.

    Article  PubMed  CAS  Google Scholar 

  54. Shimosato Y, Oboshi S, Baba K. Histological evaluation of effects of radiotherapy and chemotherapy for carcinoma. J Clin Oncol. 1971;1:19–35.

    Google Scholar 

  55. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. New Engl J Med. 2010;363:24–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a Grant-in-Aid for Scientific Research (2010–2011: 22592203).

Conflict of interest

None of the authors of this manuscript has any financial relationship with any organization, or any conflict of interest, regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1

TMR of FMISO-PET or SUV max of FDG-PET and response to chemotherapy in nine patients who received PET examination before chemotherapy. White and black circles indicate patients having tumors without (n = 2) and with (n = 7) FMISO uptake, respectively. Dotted circles indicate the seven patients who showed good histological response to preoperative chemotherapy (PPT 47 kb)

Supplementary figure 2

TMR of FMISO-PET or SUV max of FDG-PET and response to chemotherapy in 13 patients who received PET examination after initiating chemotherapy. White and black circles indicate patients having tumors without (n = 5) and with (n = 8) FMISO uptake, respectively. Dotted circles indicate the seven patients who showed good histological response to preoperative chemotherapy (PPT 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, J., Kitagawa, Y., Yamazaki, Y. et al. Advantage of FMISO-PET over FDG-PET for predicting histological response to preoperative chemotherapy in patients with oral squamous cell carcinoma. Eur J Nucl Med Mol Imaging 41, 2031–2041 (2014). https://doi.org/10.1007/s00259-014-2810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2810-y

Keywords

Navigation