Skip to main content

Advertisement

Log in

Longitudinal monitoring of tumor antiangiogenic therapy with near-infrared fluorophore-labeled agents targeted to integrin αvβ3 and vascular endothelial growth factor

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Optical imaging is emerging as a powerful tool for the noninvasive imaging of the biological processes in living subjects. This study aimed to investigate whether optical imaging of integrin αvβ3 and vascular endothelial growth factor (VEGF) expression can serve as sensitive biomarkers for tumor early response to antiangiogenic therapy.

Methods

We synthesized two near-infrared fluorescence (NIRF) imaging agents, CF680R-3PRGD2 and CF750-BevF(ab')2, which were designed to specifically bind to integrin αvβ3 and VEGF, respectively. The ability of optical imaging using the two imaging agents for early monitoring the antiangiogenic effect of sunitinib was evaluated.

Results

CF680R-3PRGD2 and CF750-BevF(ab')2 specifically bound to their respective targets in vitro and in HT-29 tumor-bearing nude mice. Sunitinib treatment led to significantly decreased tumor uptake of CF680R-3PRGD2 (e.g., 7.47 ± 1.62 % vs. 4.24 ± 0.16 % on day 4; P < 0.05) and CF750-BevF(ab')2 (e.g., 7.43 ± 2.43 % vs. 4.04 ± 1.39 % on day 2; P < 0.05) in vivo. Immunofluorescence staining and an enzyme-linked immunosorbent assay confirmed that sunitinib-induced changes in tumor uptake of CF680R-3PRGD2 and CF750-BevF(ab')2 were correlated with changes in the levels of integrin αvβ3 and VEGF. Radiobiodistribution of 99mTc-3PRGD2 and 125I-BevF(ab')2, the radiocounterparts of CF680R-3PRGD2 and CF750-BevF(ab')2, respectively, also validated optical imaging results.

Conclusion

Longitudinal monitoring of tumor integrin αvβ3 and VEGF expression could be used as early biomarkers for tumor response to antiangiogenic therapy. This strategy may facilitate the development of new antiangiogenic drugs, and be used for elucidation of the underlying mechanisms of therapies involving the integrin and the VEGF signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  4. Eliceiri BP, Cheresh DA. The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest. 1999;103:1227–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alphavbeta3 for angiogenesis. Science. 1994;264:569–71.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar CC. Integrin alphavbeta3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets. 2003;4:123–31.

    Article  CAS  PubMed  Google Scholar 

  7. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S126–38.

    Article  PubMed  Google Scholar 

  8. Haubner R, Beer AJ, Wang H, Chen X. Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 1:S86–103.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Liu Z, Wang F. Development of RGD-based radiotracers for tumor imaging and therapy: translating from bench to bedside. Curr Mol Med. 2013;13:1–19.

    Article  Google Scholar 

  10. Liu S. Radiolabeled cyclic RGD peptides as integrin alphavbeta3-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem. 2009;20:2199–213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cai W, Niu G, Chen X. Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des. 2008;14:2943–73.

    Article  CAS  PubMed  Google Scholar 

  12. Papaetis GS, Syrigos KN. Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs. 2009;23:377–89.

    Article  CAS  PubMed  Google Scholar 

  13. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25:884–96.

    Article  CAS  PubMed  Google Scholar 

  14. Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15:232–9.

    Article  CAS  PubMed  Google Scholar 

  15. Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am. 2005;43:189–204.

    Article  PubMed  Google Scholar 

  17. Smith-Jones PM, Solit D, Afroze F, Rosen N, Larson SM. Early tumor response to Hsp90 therapy using HER2 PET: comparison with 18F-FDG PET. J Nucl Med. 2006;47:793–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Nagengast WB, de Korte MA, Oude Munnink TH, Timmer-Bosscha H, den Dunnen WF, Hollema H, et al. 89Zr-bevacizumab PET of early antiangiogenic tumor response to treatment with HSP90 inhibitor NVP-AUY922. J Nucl Med. 2010;51:761–7.

    Article  CAS  PubMed  Google Scholar 

  19. van der Bilt AR, Terwisscha van Scheltinga AG, Timmer-Bosscha H, Schroder CP, Pot L, Kosterink JG, et al. Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of everolimus treatment in an ovarian cancer xenograft model. Clin Cancer Res. 2012;18:6306–14.

    Article  PubMed  Google Scholar 

  20. Chang AJ, Sohn R, Lu ZH, Arbeit JM, Lapi SE. Detection of rapalog-mediated therapeutic response in renal cancer xenografts using 64Cu-bevacizumab immunoPET. PLoS One. 2013;8:e58949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol. 2002;13:603–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nagengast WB, Lub-de Hooge MN, Oosting SF, den Dunnen WF, Warnders FJ, Brouwers AH, et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res. 2011;71:143–53.

    Article  CAS  PubMed  Google Scholar 

  23. Battle MR, Goggi JL, Allen L, Barnett J, Morrison MS. Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled alphavbeta3-integrin and alphavbeta5-integrin imaging agent. J Nucl Med. 2011;52:424–30.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med. 2006;47:113–21.

    CAS  PubMed  Google Scholar 

  25. Liu Z, Jia B, Shi J, Jin X, Zhao H, Li F, et al. Tumor uptake of the RGD dimeric probe 99mTc-G(3)-2P(4)-RGD2 is correlated with integrin alphavbeta3 expressed on both tumor cells and neovasculature. Bioconjug Chem. 2010;21:548–55.

    Article  CAS  PubMed  Google Scholar 

  26. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9:123–8.

    Article  CAS  PubMed  Google Scholar 

  27. Jia B, Liu Z, Zhu Z, Shi J, Jin X, Zhao H, et al. Blood clearance kinetics, biodistribution, and radiation dosimetry of a kit-formulated integrin alphavbeta3-selective radiotracer 99mTc-3PRGD 2 in non-human primates. Mol Imaging Biol. 2011;13:730–6.

    Article  PubMed  Google Scholar 

  28. Liu Z, Jia B, Zhao H, Chen X, Wang F. Specific targeting of human integrin alphavbeta3 with 111In-labeled Abegrin in nude mouse models. Mol Imaging Biol. 2011;13:112–20.

    Article  PubMed  Google Scholar 

  29. Liu Z, Huang J, Dong C, Cui L, Jin X, Jia B, et al. 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol Pharm. 2012;9:1409–17.

    CAS  PubMed  Google Scholar 

  30. Liu Z, Liu S, Niu G, Wang F, Liu S, Chen X. Optical imaging of integrin alphavbeta3 expression with near-infrared fluorescent RGD dimer with tetra(ethylene glycol) linkers. Mol Imaging. 2010;9:21–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Liu Z, Niu G, Shi J, Liu S, Wang F, Liu S, et al. 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin alphavbeta3 PET imaging. Eur J Nucl Med Mol Imaging. 2009;36:947–57.

    Article  CAS  PubMed  Google Scholar 

  32. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest. 2003;111:1287–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Jin ZH, Furukawa T, Claron M, Boturyn D, Coll JL, Fukumura T, et al. Positron emission tomography imaging of tumor angiogenesis and monitoring of antiangiogenic efficacy using the novel tetrameric peptide probe 64Cu-cyclam-RAFT-c(−RGDfK-)4. Angiogenesis. 2012;15:569–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sun X, Yan Y, Liu S, Cao Q, Yang M, Neamati N, et al. 18F-FPPRGD2 and 18F-FDG PET of response to Abraxane therapy. J Nucl Med. 2011;52:140–6.

    Article  PubMed  Google Scholar 

  35. Janjigian YY, Viola-Villegas N, Holland JP, Divilov V, Carlin SD, Gomes-DaGama EM, et al. Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J Nucl Med. 2013;54:936–43.

    Article  CAS  PubMed  Google Scholar 

  36. Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res. 2004;64:8009–14.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Hong H, Engle JW, Yang Y, Barnhart TE, Cai W. Positron emission tomography and near-infrared fluorescence imaging of vascular endothelial growth factor with dual-labeled bevacizumab. Am J Nucl Med Mol Imaging. 2012;2:1–13.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Natural Science Foundation of China (NSFC) projects (81222019, 81125011, and 81000625), “973” projects (2013CB733802 and 2011CB707703), grants from the Ministry of Science and Technology of China (2011YQ030114, 2012ZX09102301, and 2012BAK25B03), grants from the Ministry of Education of China (31300 and BMU20110263), grants from the Beijing Natural Science Foundation (7132131 and 7132123), and a grant from the Beijing Nova Program (Z121107002512010).

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan Wang or Zhaofei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Ma, T., Liu, H. et al. Longitudinal monitoring of tumor antiangiogenic therapy with near-infrared fluorophore-labeled agents targeted to integrin αvβ3 and vascular endothelial growth factor. Eur J Nucl Med Mol Imaging 41, 1428–1439 (2014). https://doi.org/10.1007/s00259-014-2702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2702-1

Keywords

Navigation