Skip to main content

Advertisement

Log in

The effects of d-amphetamine on extrastriatal dopamine D2/D3 receptors: a randomized, double-blind, placebo-controlled PET study with [11C]FLB 457 in healthy subjects

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The dopamine D2/D3 receptor ligand [11C]FLB 457 and PET enable quantification of low-density extrastriatal D2/D3 receptors, but it is uncertain whether [11C]FLB 457 can be used for measuring extrastriatal dopamine release.

Methods

We studied the effects of d-amphetamine (0.3 mg/kg i.v.) on extrastriatal [11C]FLB 457 binding potential (BPND) in a randomized, double-blind, placebo-controlled study including 24 healthy volunteers.

Results

The effects of d-amphetamine on [11C]FLB 457 BPND and distribution volume (VT) in the frontal cortex were not different from those of placebo. Small decreases in [11C]FLB 457 BPND were observed only in the posterior cingulate and hippocampus. The regional changes in [11C]FLB 457 BPND did not correlate with d-amphetamine-induced changes in subjective ratings of euphoria.

Conclusion

This placebo-controlled study showed that d-amphetamine does not induce marked changes in measures of extrastriatal dopamine D2/D3 receptor binding. Our results indicate that [11C]FLB 457 PET is not a useful method for measuring extrastriatal dopamine release in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 2000;20:423–451.

    Article  PubMed  CAS  Google Scholar 

  2. Farde L, Suhara T, Nyberg S, Karlsson P, Nakashima Y, Hietala J, et al. A PET study of [C-11]FLB 457 binding to extrastriatal D-2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology 1997;133:396–404.

    Article  PubMed  CAS  Google Scholar 

  3. Halldin C, Farde L, Högberg T, Mohell N, Hall H, Suhara T, et al. Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 1995;36:1275–1281.

    PubMed  CAS  Google Scholar 

  4. Olsson H, Halldin C, Swahn CG, Farde L. Quantification of [11C]FLB 457 binding to extrastriatal dopamine receptors in the human brain. J Cereb Blood Flow Metab 1999;19:1164–1173.

    Article  PubMed  CAS  Google Scholar 

  5. Chou Y-H, Halldin C, Farde L. Effect of amphetamine on extrastriatal D2 dopamine receptor binding in the primate brain: a PET study. Synapse 2000;38:138–143.

    Article  PubMed  CAS  Google Scholar 

  6. Okauchi T, Suhara T, Maeda J, Kawabe K, Obayashi S, Suzuki K. Effect of endogenous dopamine on endogenous dopamine on extrastriated [(11)C]FLB 457 binding measured by PET. Synapse 2001;41:87–95.

    Article  PubMed  CAS  Google Scholar 

  7. Montgomery AJ, Asselin MC, Farde L, Grasby PM. Measurement of methylphenidate-induced change in extrastriatal dopamine concentration using [11C]FLB 457 PET. J Cereb Blood Flow Metab 2007;27:369–377.

    Article  PubMed  CAS  Google Scholar 

  8. Hagelberg N, Aalto S, Kajander J, Oikonen V, Hinkka S, Någren K, et al. Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain 2004;109:86–93.

    Article  PubMed  CAS  Google Scholar 

  9. Aalto S, Ihalainen J, Hirvonen J, Kajander J, Scheinin H, Tanila H, et al. Cortical glutamate-dopamine interaction and ketamine-induced psychotic symptoms in man. Psychopharmacology (Berl) 2005;182:375–383.

    Article  CAS  Google Scholar 

  10. Aalto S, Bruck A, Laine M, Nagren K, Rinne JO. Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. J Neurosci 2005;25:2471–2477.

    Article  PubMed  CAS  Google Scholar 

  11. Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, et al. Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry 2006;63:1386–1395.

    Article  PubMed  CAS  Google Scholar 

  12. First MB, Spitzer RL, Gibbon M, Williams JB. Structured clinical interview for the DSM-IV axis I disorders. Washington DC: American Psychiatric Press; 1996.

    Google Scholar 

  13. Van Kammen DP, Murphy DL. Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacology 1975;44:215–222.

    Article  Google Scholar 

  14. Kankaanpää A, Gunnar T, Ariniemi K, Lillsunde P, Mykkänen S, Seppälä T. A single-step procedure for GC/MS screening and quantitative determination of amphetamine-type stimulants and related drugs in blood, serum, oral fluid and urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2004;810:57–68.

    PubMed  Google Scholar 

  15. Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J. Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 1983;7:42–50.

    Article  PubMed  Google Scholar 

  16. Lewellen TK, Kohlmyer SG, Miyaoka RS, Kaplan MS, Sterans CW, Schubert SF. Investigation of the performance of the General Electric ADVANCE positron emission tomograph in 3D mode. IEEE Trans Nucl Sci 1996;43:2199–2206.

    Article  Google Scholar 

  17. Någren K, Truong P, Helin S, Amir A, Halldin C. Production of high specific radioactivity [C-11]FLB 457 from target produced [C-11]methane. Eur J Nucl Med 2003;30(Suppl. 2):S217.

    Google Scholar 

  18. Vilkman H, Kajander J, Nagren K, Oikonen V, Syvalahti E, Hietala J. Measurement of extrastriatal D2-like receptor binding with [11C]FLB 457 – a test-retest analysis. Eur J Nucl Med 2000;27:1666–1673.

    Article  PubMed  CAS  Google Scholar 

  19. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–158.

    Article  PubMed  CAS  Google Scholar 

  20. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007;27:1533–1539.

    Article  PubMed  CAS  Google Scholar 

  21. Olsson H, Halldin C, Farde L. Differentiation of extrastriatal dopamine D2 receptor density and affinity in the human brain using PET. Neuroimage 2004;22:794–803.

    Article  PubMed  Google Scholar 

  22. Asselin MC, Montgomery AJ, Grasby PM, Hume SP. Quantification of PET studies with the very high-affinity dopamine D2/D3 receptor ligand [11C]FLB 457: re-evaluation of the validity of using a cerebellar reference region. J Cereb Blood Flow Metab 2007;27:378–392.

    Article  PubMed  CAS  Google Scholar 

  23. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding using a simplified reference region model. Neuroimage 1997;6:279–287.

    Article  PubMed  CAS  Google Scholar 

  24. Friston KJ, Holmes AP, Worsley KJ, Poline J-B, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995;2:189–210.

    Article  Google Scholar 

  25. Moghaddam B, Berridge CW, Goldman-Rakic PS, Bunney BS, Roth RH. In vivo assessment of basal and drug-induced dopamine release in cortical and subcortical regions of the anesthetized primate. Synapse 1993;13:215–222.

    Article  PubMed  CAS  Google Scholar 

  26. Verma A, Moghaddam B. NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 1996;16:373–379.

    PubMed  CAS  Google Scholar 

  27. Adams B, Moghaddam B. Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 1998;18:5545–5554.

    PubMed  CAS  Google Scholar 

  28. Shoblock JR, Sullivan EB, Maisonneuve IM, Glick SD. Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats. Psychopharmacology 2003;165:359–369.

    PubMed  CAS  Google Scholar 

  29. Shoblock JR, Maisonneuve IM, Glick SD. Differential interactions of desipramine with amphetamine and methamphetamine: evidence that amphetamine releases dopamine from noradrenergic neurons in the medial prefrontal cortex. Neurochem Res 2004;29:1437–1442.

    Article  PubMed  CAS  Google Scholar 

  30. Riccardi P, Li R, Ansari MS, Zald D, Park S, Dawant B, et al. Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology 2006;31:1016–1026.

    Article  PubMed  CAS  Google Scholar 

  31. Cropley VL, Innis RB, Nathan PJ, Brown AK, Sangare JL, Lerner A, et al. Small effect of dopamine release and no effect of dopamine depletion on [(18)F]fallypride binding in healthy humans. Synapse 2008;62:399–408.

    Article  PubMed  CAS  Google Scholar 

  32. Morris ED, Yoder KK. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics. J Cereb Blood Flow Metab 2007;27:606–617.

    Article  PubMed  CAS  Google Scholar 

  33. Martinez D, Slifstein M, Broft A, Mawlawi O, Hwang DR, Huang Y, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. II. Amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 2003;23:285–300.

    Article  PubMed  CAS  Google Scholar 

  34. Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 1997;94:2569–2974.

    Article  PubMed  CAS  Google Scholar 

  35. Slifstein M, Laruelle M. Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 2001;28:595–608.

    Article  PubMed  CAS  Google Scholar 

  36. Dagher A, Gunn R, Lockwood G, Cunningham VJ, Grasby PM, Brooks DJ. Measuring neurotransmitter release with PET: methodological issues. In: Carson RE, Herscovitch P, Daube-Witherspoon ME, editors. Quantitative functional brain imaging with positron emission tomography. San Diego: Academic Press; 1998. p. 449–454.

    Google Scholar 

  37. Olsson H, Farde L. Potentials and pitfalls using high affinity radioligands in PET and SPET determinations on regional drug induced D2 receptor occupancy – a simulation study based on experimental data. Neuroimage 2001;14(4):936–945.

    Article  PubMed  CAS  Google Scholar 

  38. Hall H, Farde L, Halldin C, Hurd YL, Pauli S, Sedvall G. Autoradiographic localization of extrastriatal D2-dopamine receptors in the human brain using [125I]epidepride. Synapse 1996;23:115–123.

    Article  PubMed  CAS  Google Scholar 

  39. Delforge J, Bottlaender M, Pappata S, Loc’h C, Syrota A. Absolute quantification by positron emission tomography of the endogenous ligand. J Cereb Blood Flow Metab 2001;21:613–630.

    Article  PubMed  CAS  Google Scholar 

  40. Willeit M, Ginovart N, Graff A, Rusjan P, Vitcu I, Houle S, et al. First human evidence of d-amphetamine induced displacement of a D2/3 agonist radioligand: A [11C]-(+)-PHNO positron emission tomography study. Neuropsychopharmacology 2008;33:279–289.

    Article  PubMed  CAS  Google Scholar 

  41. Piccini P, Pavese N, Brooks DJ. Endogenous dopamine release after pharmacological challenges in Parkinson’s disease. Ann Neurol 2003;53:647–653.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance of the staff of Turku PET centre is gratefully acknowledged. We thank Aino Kankaanpää (National Public Health Institute) for the measurement of d-amphetamine concentrations in plasma. This study was supported financially by clinical grants (EVO) from Turku University Hospital, and by the Academy of Finland (project nos. 111879 and 210825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmo Hietala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aalto, S., Hirvonen, J., Kaasinen, V. et al. The effects of d-amphetamine on extrastriatal dopamine D2/D3 receptors: a randomized, double-blind, placebo-controlled PET study with [11C]FLB 457 in healthy subjects. Eur J Nucl Med Mol Imaging 36, 475–483 (2009). https://doi.org/10.1007/s00259-008-0969-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0969-9

Keywords

Navigation