Skip to main content

Advertisement

Log in

Development and evaluation of compounds for imaging of β-amyloid plaque by means of positron emission tomography

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The proof of concept for in vivo targeting of β-amyloid plaques (Aβ) in patients with Alzheimer’s disease (AD) by means of nuclear imaging methods has been shown in recent clinical studies.

Methods

For positron emission tomography (PET), the five compounds [11C]PIB, 3′[18F]FPIB, [18F]FDDNP, [11C]SB-13 and [18F]F-SB-13 have been developed by a formal charge neutralisation of agents used for staining of AD brain post mortem.

Results

In AD-patients, these compounds have been shown to possess a selective uptake in the brain regions known to have a high Aβ-load. Progress towards tracers with proportionality between tracer uptake and quantity of Aβ-load, of use for longitudinal studies of AD patients, is addressed in the current development of Aβ-tracers.

Conclusion

Despite the extensive information on the structure–affinity relationship of several Aβ-binding compounds, data on the regional brain binding kinetics—beyond uptake in healthy rodents—have been obtained only for a few compounds. Recent results indicate that PET-imaging of Aβ-deposits in transgenic rodent models of AD is feasible which may be valuable for a more relevant preclinical evaluation of Aβ-tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

NFTs:

neurofibrillary tangles

FTLD:

frontotemporal lobar degeneration

PSP:

progressive supranuclear palsy

References

  1. Drzezga A, Grimmer T, Peller M, Wermke M, Siebner H, Rauschecker JP, et al. Impaired cross-modal inhibition in Alzheimer disease. PLoS Med. 2005;2:e288.

    Article  PubMed  Google Scholar 

  2. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46:1625–32.

    PubMed  CAS  Google Scholar 

  3. Martins RN, Robinson PJ, Chleboun JO, Beyreuther K, Masters CL. The molecular pathology of amyloid deposition in Alzheimer’s disease. Mol Neurobiol. 1991;5:389–98.

    Article  PubMed  CAS  Google Scholar 

  4. Beyreuther K, Masters CL. Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer’s disease: precursor–product relationships in the derangement of neuronal function. Brain Pathol. 1991;1:241–51.

    Article  PubMed  CAS  Google Scholar 

  5. Klunk WE, Debnath ML, Pettegrew JW. Development of small molecule probes for the beta-amyloid protein of Alzheimer’s disease. Neurobiol Aging. 1994;15:691–8.

    Article  PubMed  CAS  Google Scholar 

  6. Klunk WE, Debnath ML, Pettegrew JW. Chrysamine-G binding to Alzheimer and control brain: autopsy study of a new amyloid probe. Neurobiol Aging. 1995;16:541–8.

    Article  PubMed  CAS  Google Scholar 

  7. Dezutter NA, Dom RJ, De Groot TJ, Bormans GM, Verbruggen AM. 99mTc-MAMA-chrysamine G, a probe for beta amyloid protein of Alzheimer’s disease. Eur J Nucl Med. 1999;26:1392–9.

    Article  PubMed  CAS  Google Scholar 

  8. Styren SD, Hamilton RL, Styren GC, Klunk WE. X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer’s disease pathology. J Histochem Cytochem. 2000;48:1223–32.

    PubMed  CAS  Google Scholar 

  9. Klunk WE, Bacskai BJ, Mathis CA, Kajdasz ST, McLellan ME, Frosch MP, et al. Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropathol Exp Neurol. 2002;61:797–805.

    PubMed  CAS  Google Scholar 

  10. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46:2740–54.

    Article  PubMed  CAS  Google Scholar 

  11. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging Brain Amyloid in Alzheimer’s Disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.

    Article  PubMed  CAS  Google Scholar 

  12. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain. 2006;129:2856–66.

    Article  PubMed  Google Scholar 

  13. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47.

    Article  PubMed  CAS  Google Scholar 

  14. Kemppainen NM, Aalto S, Wilson IA, Nagren K, Helin S, Bruck A, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology. 2007;68:1603–6.

    Article  PubMed  CAS  Google Scholar 

  15. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2007 May 10; PMID: 17499392.

  16. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, et al. inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol. 2006;59:512–9.

    Article  PubMed  CAS  Google Scholar 

  17. Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol. 1999;45:358–68.

    Article  PubMed  CAS  Google Scholar 

  18. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006;67:446–52.

    Article  PubMed  CAS  Google Scholar 

  19. Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med. 2005;46:1959–72.

    PubMed  CAS  Google Scholar 

  20. Zhou Y, Resnick SM, Ye W, Fan H, Holt DP, Klunk WE, et al. Using a reference tissue model with spatial constraint to quantify [11C]Pittsburgh compound B PET for early diagnosis of Alzheimer’s disease. Neuroimage. 2007;36:298–312.

    Article  PubMed  Google Scholar 

  21. Bacskai BJ, Frosch MP, Freeman SH, Raymond SB, Augustinack JC, Johnson KA, et al. Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol. 2007;64:431–4.

    Article  PubMed  Google Scholar 

  22. Mathis CA, Lopresti B, Mason N, Price J, Flatt N, Bi W, et al. Comparison of the amyloid imaging agents [F-18]3′-F-PIB and [C-11]PIB in Alzheimer’s disease and control subjects. J Nucl Med. 2007;48:56P. (abstract).

    Google Scholar 

  23. Ono M, Wilson A, Nobrega J, Westaway D, Verhoeff P, Zhuang ZP, et al. 11C-labeled stilbene derivatives as Abeta-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl Med Biol. 2003;30:565–71.

    Article  PubMed  CAS  Google Scholar 

  24. Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, et al. In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry. 2004;12:584–95.

    PubMed  Google Scholar 

  25. Rowe C, Ng S, Mulligan R, Ackermann U, Browne W, O’Keefe G, et al. First results from human studies of a novel F-18 PET ligand for brain b-amyloid imaging. J Nucl Med. 2007;48:57P. (abstract).

    Google Scholar 

  26. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci. 2001;21:RC189.

    PubMed  CAS  Google Scholar 

  27. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry. 2002;10:24–35.

    PubMed  Google Scholar 

  28. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006;355:2652–6.

    Article  PubMed  CAS  Google Scholar 

  29. Cai L, Chin FT, Pike VW, Toyama H, Liow JS, Zoghbi SS, et al. Synthesis and evaluation of two 18F-labeled 6-iodo-2-(4′-N,N-dimethylamino)phenylimidazo[1,2-a]pyridine derivatives as prospective radioligands for beta-amyloid in Alzheimer’s disease. J Med Chem. 2004;47:2208–18.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang W, Oya S, Kung MP, Hou C, Maier DL, Kung HF. F-18 stilbenes as PET imaging agents for detecting beta-amyloid plaques in the brain. J Med Chem. 2005;48:5980–8.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang W, Oya S, Kung MP, Hou C, Maier DL, Kung HF. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Abeta aggregates in the brain. Nucl Med Biol. 2005;32:799–809.

    Article  PubMed  CAS  Google Scholar 

  32. Stephenson KA, Chandra R, Zhuang ZP, Hou C, Oya S, Kung MP, et al. Fluoro-pegylated (FPEG) imaging agents targeting Abeta aggregates. Bioconjug Chem. 2007;18:238–46.

    Article  PubMed  CAS  Google Scholar 

  33. Cai L, Innis RB, Pike VW. Radioligand development for PET imaging of b-amyloid (Ab)-current status. Curr Med Chem. 2007;14:19–52.

    Article  PubMed  CAS  Google Scholar 

  34. Klunk WE, Lopresti BJ, Ikonomovic MD, Lefterov IM, Koldamova RP, Abrahamson EE, et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci. 2005;25:10598–606.

    Article  PubMed  CAS  Google Scholar 

  35. Toyama H, Ye D, Ichise M, Liow JS, Cai L, Jacobowitz D, et al. PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2005;32:593–600.

    Article  PubMed  CAS  Google Scholar 

  36. Bacskai BJ, Hickey GA, Skoch J, Kajdasz ST, Wang Y, Huang GF, et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci USA. 2003;100:12462–7.

    Article  PubMed  CAS  Google Scholar 

  37. Manook A, Henriksen G, Platzer S, Neff F, Huisman M, Yousefi BH, et al. Feasibility of in vivo amyloid plaque imaging in a transgenic mouse model of Alzheimer’s disease. J Nucl Med. 48:116P. (abstract).

Download references

Conflict of interest statement

There are no conflicts of interest for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gjermund Henriksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriksen, G., Yousefi, B.H., Drzezga, A. et al. Development and evaluation of compounds for imaging of β-amyloid plaque by means of positron emission tomography. Eur J Nucl Med Mol Imaging 35 (Suppl 1), 75–81 (2008). https://doi.org/10.1007/s00259-007-0705-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0705-x

Keywords

Navigation