Skip to main content
Log in

Assessment of Takotsubo cardiomyopathy (transient left ventricular apical ballooning) using99mTc-tetrofosmin,123I-BMIPP,123I-MIBG and99mTc-PYP myocardial SPECT

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

We compared Takotsubo cardiomyopathy (transient left ventricular apical ballooning) with acute myocardial infarction (AMI) using two-dimensional echocardiography,99mTc-tetrofosmin,99mTc-PYP,123I-BMIPP and123I-MIBG myocardial SPECT.Methods: We examined 7 patients with Takotsubo cardiomyopathy and 7 with AMI at the time of emergency admission (acute phase), and 2-14 days (subacute phase), one month (chronic phase), and 3 months (chronic II phase) after the attack. The left ventricle was divided into nine regions on echocardiograms and SPECT images, and the degree of abnormalities in each region was scored according to five grades from normal (0) to severely abnormal (4).Results: Coronary angiography showed the absence of stenotic regions in patients with Takotsubo cardiomyopathy, and severely stenotic and/or occlusive lesions in patients with AMI. The total ST segment elevation on electrocardiograms (mm) was 7.8 ± 3.7 in those with Takotsubo cardiomyopathy, and 7.3 ± 3.9 in patients with AMI. Abnormal wall motion scores on echocardiograms were 14.2 ± 4.6, 4.7 ± 4.0, 1.7 ± 2.0 and 0.5 ± 0.4 during the acute, subacute, chronic and chronic II phases, respectively, in patients with Takotsubo cardiomyopathy, and 14.0 ± 4.3, 11.4 ± 3.9, 8.8 ± 3.6 and 5.2 ± 4.8 in those with AMI. Abnormal myocardial perfusion scores on99mTc-tetrofosmin images were 11.8 ± 3.5, 3.2 ± 3.0, 0.5 ± 1.2 and 0.2 ± 0.4 during the acute, subacute, chronic and chronic II phases, in patients with Takotsubo cardiomyopathy, and 16.2 ± 4.3, 13.9 ± 4.6, 7.9 ± 4.6 and 5.0 ± 4.5, respectively, in those with AMI. Abnormal myocardial fatty acid scores on123I-BMIPP images were 12.6 ± 3.7, 6.8 ± 3.2 and 0.4 ± 0.6 during the subacute, chronic and chronic II phases, respectively, in patients with Takotsubo cardiomyopathy, and 16.5 ±5.1,14.7 ± 4.8 and 7.5 ± 4.5 in those with AMI. Abnormal myocardial sympathetic nerve function scores on123I-MIBG images were 14.8 ± 4.0, 8.8 ± 4.0 and 0.4 ± 0.6 during the subacute, chronic, chronic II phases, respectively, in patients with Takotsubo cardiomyopathy, and 18.6 ± 6.5, 16.8± 6.8 and 12.9 ± 5.2 in those with AMI. Myocardial99mTc-PYP uptake was abnormal not only in patients with AMI but also in those with Takotsubo cardiomyopathy during the acute phase.Conclusions: Takotsubo cardiomyopathy might represent a stunned myocardium caused by a disturbance of the coronary microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawai S, Suzuki H, Yamaguchi H, Tanaka K, Sawada H, Aizawa T, et al. Ampulla cardiomyopathy (Takotsubo cardiomyopathy) —Reversible left ventricular dysfunction with ST segment elevation—.Jpn Circ J 2000; 64:156–159.

    Article  PubMed  CAS  Google Scholar 

  2. Nyui N, Yamanaka O, Nakamura R, Sawano M, Kawai S. ’Tako-tsubo’ transient ventricular dysfunction—A case report—.Jpn Circ J 2000; 64:715–719.

    Article  PubMed  CAS  Google Scholar 

  3. Tsuchihashi K, Ueshima K, Uchida T, Ohmura N, Kimura K, Owa M, et al. Transient left ventricular apical ballooning without coronary artery stenosis: A novel heart syndrome mimicking acute myocardial infarction.J Am Coll Cardiol 2001; 38:11–18.

    Article  PubMed  CAS  Google Scholar 

  4. Dote K, Sato H, Tateishi H, Uchida T, Ishihara M. Myocardial stunning due to simultaneous multivessel coronary spasms: a review of 5 cases.J Cardiol 1991; 21:203–214.

    PubMed  CAS  Google Scholar 

  5. Iga K, Hori K, Kitaguchi K, Matsumura T, Gen H, Tomonaga G, et al. Transient segmental asynergy of the left ventricle of patients with various clinical manifestations possibly unrelated to the coronary artery disease.Jpn Circ J 1991; 55:1061–1067.

    PubMed  CAS  Google Scholar 

  6. Tamaki N, Takahashi N, Kawamoto M, Torizuka T, Tadamura E, Yonekura Y, et al. Myocardial tomography using technetium-99m-tetrofosmin to evaluate coronary artery disease.J Nucl Med 1994; 35:594–600.

    PubMed  CAS  Google Scholar 

  7. Sugihara H, Nakagawa T, Yamashita E, Kinoshita N, Ito K, Azuma A, et al. Reverse redistribution of Tc-99m- tetrofosmin in patients with acute myocardial infarction.Ann Nucl Med 1999; 13:43–47.

    Article  PubMed  CAS  Google Scholar 

  8. Ito K, Sugihara H, Katoh S, Azuma A, Nakagawa M. Assessment of Takotsubo (ampulla) cardiomyopathy using99mTc-tetrofosmin myocardial SPECT—comparison with acute coronary syndrome—.Ann Nucl Med 2003; 17:115–122.

    Article  PubMed  Google Scholar 

  9. Bonte FJ, Parkey RW, Graham KD, More J, Stokely EM. A new method for radionuclide imaging of myocardial infarction.Radiology 1974; 110:473–474.

    PubMed  CAS  Google Scholar 

  10. Jansen DE, Corbett JR, Buja M, Hansen C, Ugoline V, Parkey RW, et al. Quantification of myocardial injury produced by temporary coronary artery occlusion and reflow with technetium-99m-pyrophosphate.Circulation 1987; 75:611–617.

    PubMed  CAS  Google Scholar 

  11. Reske SN, Sauer W, Machulla HJ, Knust J, Winkler C. Metabolism of 15 (p-123I-iodophenyl-) pentadecanoic acid in heart muscle and non cardiac tissue.Eur J Nucl Med 1985; 10:228–234.

    Article  PubMed  CAS  Google Scholar 

  12. Ito K, Sugihara H, Kawasaki T, Katoh S, Azuma A, Nakagawa M. Dynamic change in cardiac fatty acid metabolism in the stunned human myocardium.Ann Nucl Med 2001; 15:343–350.

    PubMed  CAS  Google Scholar 

  13. Mock BH, Tuli M. Influence of specific activity on myocardial uptake of123I-MIBG in rats.Nucl Med Commun 1987; 9:663–667.

    Article  Google Scholar 

  14. Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu JL, Clinthorone NH, et al. Myocardial imaging with a radioiodinated norepinephrine storage analog.J Nucl Med 1981; 22:22–31.

    PubMed  CAS  Google Scholar 

  15. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction.Circulation 1982; 66:1146–1149.

    PubMed  CAS  Google Scholar 

  16. Ohtsuka T, Hamada M, Kodama K, Sasaki O, Suzuki M, Hara Y, et al. Neurogenic stunned myocardium.Circulation 2000; 101:2122–2124.

    PubMed  CAS  Google Scholar 

  17. Salathe M, Weiss P, Ritz R. Rapid reversible of heart failure in a patient with phaeochromocytoma and catecholamine-induced cardiomyopathy who was treated with captopril.Br Heart J 1992; 68:527–528.

    Article  PubMed  CAS  Google Scholar 

  18. Iga K, Himura Y, Izumi C, Miyamoto T, Kijima K, Gen H, et al. Reversible left ventricular dysfunction associated with Guillain-Barré syndrome: An expression of catecholamine cardiotoxicity?Jpn Circ J 1995; 59:236–240.

    PubMed  CAS  Google Scholar 

  19. Abbott BG, Wackeres FJ. Emergency department chest pain units and the role of radionuclide imaging.J Nucl Cardiol 1998; 5:73–79.

    Article  PubMed  CAS  Google Scholar 

  20. Olson HG, Lyons KP, Aronow WS, Stinson PJ, Kuperus J, Waters HJ. The high-risk angina patient: Identification by clinical features, hospital course, electrocardiography and technetium-99m stannous pyrophosphate scintigraphy.Circulation 1981; 64:674–684.

    PubMed  CAS  Google Scholar 

  21. Okuda K, Nohara R, Fujita M, Tamaki N, Konishi J, Sasayama S. Technetium-99m-Pyrophosphate uptake as an indicator of myocardial injury without infarct.J Nucl Med 1994; 35:1366–1370.

    PubMed  CAS  Google Scholar 

  22. Kawai Y, Tsukamoto E, Nozaki Y, Morita K, Sakurai M, Tamaki N. Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain.J Am Coll Cardiol 2001; 38:1888–1894.

    Article  PubMed  CAS  Google Scholar 

  23. Tamaki N, Kawamoto M, Yonekura Y, Fujibayashi Y, Takahashi N, Konishi J, et al. Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: assessment with emission tomography using an iodinated branched fatty acid analog.J Nucl Med 1992; 33:659–667.

    PubMed  CAS  Google Scholar 

  24. Stanton MS, Tuli MM, Radtke NL, Heger JJ, Miles WM, Mock BH, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123 metaiodobenzylguanidine.J Am Coll Cardiol 1989; 14:1519–1526.

    Article  PubMed  CAS  Google Scholar 

  25. Sakata K, Yoshida H, Hoshino T, Kurata C. Sympathetic nerve activity in the spasm induced coronary artery region is associated with disease activity of vasospastic angina.J Am Coll Cardiol 1996; 28:460–464.

    PubMed  CAS  Google Scholar 

  26. Cannon RO, Epstein SE. Microvascular angina as a cause of chest pain with angiographically normal coronary arteries.Am J Cardiol 1988; 61:1338–1343.

    Article  PubMed  Google Scholar 

  27. Sherf L, Ben-Shaul Y, Lieberman Y, Neufeld HN. The human coronary circulation: An electron microscopic study.Am J Cardiol 1977; 39:599–607.

    Article  PubMed  CAS  Google Scholar 

  28. Guzman SV, Swenson E, Jones M. Intracoronary reflex. Demonstration by coronary angiography.Circ Res 1962; 10:739–745.

    PubMed  CAS  Google Scholar 

  29. Hori M, Tamai J, Kitakaze M, Iwakura K, Rotoh K, Iwai K, et al. Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs.Am J Physiol 1989; 257:244–251.

    Google Scholar 

  30. Nagai H, Nakamura Y, Tanaka S, Kobayashi K. Angina pectoris associated with ST segment elevation in the absence of epicardial coronary arterial obstruction.Angiology 1994; 45:391–397.

    Article  PubMed  CAS  Google Scholar 

  31. Berne RM. Coronary circulation. InHandbook of Physiology. Vol. I The heart. Berne RM et al. (eds), Bethesda; American Physiological Society, 1979: 873.

    Google Scholar 

  32. Hirsch EF, Broghard-Erdle AM. The innervation of the human heart. I The coronary arteries and the myocardium.Arch Pathol 1961; 71:384–407.

    PubMed  CAS  Google Scholar 

  33. Johansson G, Jonesson L, Lannek N, Blomgren L, Lindberg P, Poupa O. Severe stress-cardiopathy in pigs.Am Heart J 1987; 87:451–457.

    Article  Google Scholar 

  34. Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by an earthquake.N Engl J Med 1996; 334:413- 419.

    Article  PubMed  CAS  Google Scholar 

  35. Cebelin MS, Hirsch CS. Human stress cardiomyopathy: Myocardial lesions in victims of homicidal assaults without internal injuries.Hum Path 1980; 11:123–132.

    Article  PubMed  CAS  Google Scholar 

  36. Ueyama T, Kasamutsu K, Hano T, Yamamoto K, Tsuruo Y, Nishino I. Emotional stress induced transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors—A possible animal model of Tako-tsubo cardiomyopathy.Circ J 2002: 66:712–713.

    Article  PubMed  Google Scholar 

  37. Murphree SS, Saffitz JE. Quantitative autoradiographic delineation of the distribution of beta-adrenergic receptors in canine and feline left ventricular myocardium.Circ Res 1987; 60:568–579.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki fro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

fro, K., Sugihara, H., Kinoshita, N. et al. Assessment of Takotsubo cardiomyopathy (transient left ventricular apical ballooning) using99mTc-tetrofosmin,123I-BMIPP,123I-MIBG and99mTc-PYP myocardial SPECT. Ann Nucl Med 19, 435–445 (2005). https://doi.org/10.1007/BF02985570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985570

Key words

Navigation