Skip to main content
Log in

PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Positron emission tomography (PET) using 18F-labelled 3′-deoxy-3′-fluorothymidine (FLT) was assessed for therapy monitoring in patients with rectal cancer undergoing neoadjuvant chemoradiotherapy.

Methods

Ten patients with locally advanced rectal cancer were included and underwent long-course preoperative chemoradiotherapy (total dose 45 Gy, 1.8 Gy/day, concomitant 250 mg/m2 5-fluorouracil) followed by surgery. FLT-PET was performed prior to chemoradiotherapy, 2 weeks after initiation of chemoradiotherapy and preoperatively (3–4 weeks post chemoradiotherapy). FLT uptake was correlated with histopathological tumour regression and changes in T stage.

Results

Mean tumour FLT uptake was 4.2±1.0 SUV before therapy and decreased significantly to 2.9 ± 0.6 SUV 14 days after initiation of chemoradiotherapy (−28.6% ± 10.7%, p = 0.005). The preoperative scan showed a further decrease to 1.9 ± 0.4 SUV (−54.7% ± 7.6%, p = 0.005). However, the degree of change in FLT uptake 2 weeks after initiation and after completion of neoadjuvant therapy did not correlate with histopathological tumour regression.

Conclusion

FLT-PET did not seem to be a promising method for assessment of tumour response in the studied chemoradiotherapy regimen in patients with rectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkan R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 2004;351:1731–40.

    Article  PubMed  CAS  Google Scholar 

  2. Hunerbein M, Pegios W, Rau B, Vogl TJ, Felix R, Schlag PM. Prospective comparison of endorectal ultrasound, three-dimensional endorectal ultrasound, and endorectal MRI in the preoperative evaluation of rectal tumors. Preliminary results. Surg Endosc 2000;14:1005–9.

    Article  PubMed  CAS  Google Scholar 

  3. Wallengren NO, Holtas S, Andren-Sandberg A, Jonsson E, Kristoffersson DT, McGill S. Rectal carcinoma: double-contrast MR imaging for preoperative staging. Radiology 2000;215:108–14.

    PubMed  CAS  Google Scholar 

  4. Hawnaur JM, Zhu XP, Hutchinson CE. Quantitative dynamic contrast enhanced MRI of recurrent pelvic masses in patients treated for cancer. Br J Radiol 1998;71:1136–42.

    PubMed  CAS  Google Scholar 

  5. Bernini A, Deen KI, Madoff RD, Wong WD. Preoperative adjuvant radiation with chemotherapy for rectal cancer: its impact on stage of disease and the role of endorectal ultrasound. Ann Surg Oncol 1996;3:131–5.

    Article  PubMed  CAS  Google Scholar 

  6. Weber WA, Wieder H. Monitoring chemotherapy and radiotherapy of solid tumors. Eur J Nucl Med Mol Imaging 2006;33 Suppl 13:27–37.

    Article  PubMed  Google Scholar 

  7. Haberkorn U, Strauss LG, Dimitrakopoulou A, Engenhart R, Oberdorfer F, Ostertag H, et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991;32:1485–90.

    PubMed  CAS  Google Scholar 

  8. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 2003;44:1426–31.

    PubMed  CAS  Google Scholar 

  9. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005;46:945–52.

    PubMed  CAS  Google Scholar 

  10. Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations—a pilot study. Cancer Biother Radiopharm 2004;19:436–42.

    PubMed  CAS  Google Scholar 

  11. Francis DL, Freeman A, Visvikis D, Costa DC, Luthra SK, Novelli M, et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 2003;52:1602–6.

    Article  PubMed  CAS  Google Scholar 

  12. Francis DL, Visvikis D, Costa DC, Arulampalam TH, Townsend C, Luthra SK, et al. Potential impact of [18F]3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003;30:988–94.

    Article  PubMed  CAS  Google Scholar 

  13. van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, de Vries EF, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 2004;45:695–700.

    PubMed  Google Scholar 

  14. Machulla HJ, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000;243:843–6.

    Article  CAS  Google Scholar 

  15. Zhang H, Yoshikawa K, Tamura K, Tomemori T, Sagou K, Tian M, et al. [11C]methionine positron emission tomography and survival in patients with bone and soft tissue sarcomas treated by carbon ion radiotherapy. Clin Cancer Res 2004;10:1712–64.

    Google Scholar 

  16. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40:1771–7.

    PubMed  CAS  Google Scholar 

  17. Onaitis MW, Noone RB, Hartwig M, Hurwitz H, Morse M, Jowell P, et al. Neoadjuvant chemoradiation for rectal cancer: analysis of clinical outcomes from a 13-year institutional experience. Ann Surg 2001;233:778–85.

    Article  PubMed  CAS  Google Scholar 

  18. Becker K, Mueller JD, Schulmacher C, Ott K, Fink U, Busch R, et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003;98:1521–30.

    Article  PubMed  Google Scholar 

  19. Mandard AM, Dalibard F, Mandard, JC, Marnay J, Henry-Amar M, Petiot JF. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994;73:2680–6.

    Article  PubMed  CAS  Google Scholar 

  20. Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO. Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 2005;65:4202–10.

    Article  PubMed  CAS  Google Scholar 

  21. Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi T, et al. Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004;45:1754–8.

    PubMed  CAS  Google Scholar 

  22. Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, et al. Use of 3′-deoxy-3′-[18F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging 2006;33:412–9.

    Article  PubMed  CAS  Google Scholar 

  23. Pio BS, Park CK, Pietras R, Hsueh W, Satyamurthy N, Pegram MD, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 2006;8:36–42.

    Article  PubMed  Google Scholar 

  24. Dittmann H, Dohmen BM, Kehlbach R, Bartusek G, Pritzkow M, Sarbia M, et al. Early changes in [18F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 2002;29:1462–9.

    Article  PubMed  CAS  Google Scholar 

  25. Johansson M, Bergenheim AT, Widmark A, Henriksson R. Effects of radiotherapy and estramustine on the microvasculature in malignant glioma. Br J Cancer 1999;80:142–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the efforts of the cyclotron and radiochemistry staff. We appreciate the excellent technical support offered by the technologists at our institution. We thank Jeffrey Fessler, PhD, University of Michigan, for generously providing the software for the iterative reconstruction of the PET studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinrich A. Wieder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieder, H.A., Geinitz, H., Rosenberg, R. et al. PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 34, 878–883 (2007). https://doi.org/10.1007/s00259-006-0292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0292-2

Keywords

Navigation