Skip to main content

Advertisement

Log in

Use of tomographic nuclear medicine procedures, SPECT and pinhole SPECT, with cationic lipophilic radiotracers for the evaluation of axillary lymph node status in breast cancer patients

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Scintimammography with the cationic lipophilic 99mTc-tetrofosmin and 99mTc-methoxyisobutylisonitrile (MIBI) is one of the most widely available non-invasive imaging methods employed in the preoperative evaluation of breast cancer axillary lymph node status, for which, at present, axillary lymph node dissection (ALND) is still considered the method of choice. Comparative studies have demonstrated that single-photon emission computed tomography (SPECT) acquisition significantly improves the sensitivity and accuracy achieved with planar scintimammography, particularly when lymph nodes are non-palpable, small in size and limited in number. Thus, SPECT should be preferred to planar imaging, particularly in those patients without clinical suspicion of axillary metastatic involvement, given its high negative predictive value; however, false negative results have been reported due to the small size of lymph nodes and/or to partial or micrometastatic involvement. SPECT could also find clinical application in combination with radioguided sentinel lymph node (SLN) biopsy, providing additional useful information in selected cases. The performance of SPECT can be improved by using a pinhole collimator (pinhole SPECT), as recently demonstrated in comparative studies, and this method also determines the number of lymph nodes, thus delivering important prognostic information. Moreover, pinhole SPECT, the principal limitation of which (as with imaging methods) lies in its inability to detect micrometastases, has also proved capable of increasing the accuracy of radioguided SLN biopsy. However, only limited data relating to pinhole SPECT are available as yet, and clinical trials are necessary to validate its potential value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2A–C
Fig. 3A–D

Similar content being viewed by others

References

  1. Carter C, Allen C, Henson D. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989; 63:181–187.

    CAS  PubMed  Google Scholar 

  2. Fisher B, Bauer M, Wickerham DL, Redmon C, Fisher E. Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer: an NSABP update. Cancer 1983; 52:1551–1557.

    CAS  PubMed  Google Scholar 

  3. Saez RA, McGuire WL, Clark GM. Prognostic factors in breast cancer. Semin Surg Oncol 1989; 5:102–110.

    CAS  PubMed  Google Scholar 

  4. Giuliano AE, Kirgan DM, Guenther JM, Morton DL. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg 1994; 220:391–398.

    CAS  PubMed  Google Scholar 

  5. Albertini JJ, Lyman GH, Cox C, Yeatman T, Balducci L, Ku N, Shivers S, Berman C, Wells K, Rapaport D, Shons A, Horton J, Greenberg H, Nicosia S, Clark R, Cantor A, Reintgen DS. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 1996; 276:1818–1822.

    Article  CAS  PubMed  Google Scholar 

  6. Veronesi U, Paganelli G, Galimberti V, Viale G, Zurrida S, Bedoni M, Costa A, de Cicco C, Geraghty JG, Luini A, Sacchini V, Veronesi P. Sentinel node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph nodes. Lancet 1997; 349:1864–1887.

    CAS  PubMed  Google Scholar 

  7. Pijpers R, Meijer S, Hoekstra OS, Collet GJ, Comans EF, Boom RP, van Diest PJ, Teule GJ. Impact of lymphoscintigraphy on sentinel node identification with technetium-99m-colloidal albumin in breast cancer. J Nucl Med 1997; 38:366–368.

    CAS  PubMed  Google Scholar 

  8. Krag DN, Weaver DL, Ashikaga T, Moffat F, Klimberg VS, Shriver C, Feldman S, Kusminsky R, Gadd M, Kuhn J, Harlow S, Beitsch P. The sentinel node in breast cancer. A multicenter validation study. N Engl J Med 1998; 339:941–946.

    CAS  PubMed  Google Scholar 

  9. Cox CE, Pendas S, Cox JM, Joseph E, Shons AR, Yeatman T, Ku NN, Lyman GH, Berman C, Haddad F, Reintgen DS. Guidelines for sentinel node biopsy and lymphatic mapping of patients with breast cancer. Ann Surg 1998; 226:645–653.

    Article  Google Scholar 

  10. Borgstein PJ, Pijpers R, Comans EF, van Diest PJ, Boom RP, Meijer S. Sentinel lymph node biopsy in breast cancer: guidelines and pitfalls of lymphoscintigraphy and gamma probe detection. J Am Coll Surg 1998; 186:275–283.

    CAS  PubMed  Google Scholar 

  11. Gulec SA, Moffat FL, Carrol RG, Serafini AN, Sfakianakis GN, Allen L, Boggs J, Escobedo D, Pruett CS, Gupta A, Livingstone AS, Krag DN. Sentinel node localization in early breast cancer. J Nucl Med 1998; 39:1388–1393.

    CAS  PubMed  Google Scholar 

  12. Flett MM, Going JJ, Stanton PD, Cooke TG. Sentinel node localization in patients with breast cancer. Br J Surg 1998; 85:991–993.

    Article  CAS  PubMed  Google Scholar 

  13. Haigh PI, Hansen NM, Giuliano AE, Edwards GK, Ye W, Glass EC. Factors affecting sentinel node localization during preoperative breast lymphoscintigraphy. J Nucl Med 2000; 41:1682–1688.

    CAS  PubMed  Google Scholar 

  14. Boolbol SK, Fey JV, Borgen PI, Heerdt AS, Montgomery LL, Paglia M, Petrek JA, Cody HS 3rd, Van Zee KJ. Intradermal isotope injection: a highly accurate method of lymphatic mapping in breast carcinoma. Ann Surg Oncol 2001; 8:20–24.

    Article  CAS  PubMed  Google Scholar 

  15. Keshtgar MRS, Ell PJ. Clinical role of sentinel-lymph-node biopsy in breast cancer. Lancet Oncol 2002; 3:105–110.

    Article  PubMed  Google Scholar 

  16. Walsh R, Kornguth PJ, Soo MS, Bentley R, DeLong DM. Axillary lymph nodes: mammographic, pathologic and clinical correlations. Am J Roentgenol 1997; 168:33–38.

    CAS  Google Scholar 

  17. Yang WT, Chang J, Metreweli C. Patients with breast cancer: differences in color Doppler flow and gray-scale US features of benign and malignant axillary lymph nodes. Radiology 2000; 215:568–573.

    CAS  PubMed  Google Scholar 

  18. Yoshimura G, Sakurai T, Oura S, Suzuma T, Tamaki T, Umemura T, Kokawa Y, Yang Q. Evaluation of axillary lymph node status in breast cancer with MRI. Breast Cancer 1999; 25:249–258.

    Google Scholar 

  19. Utech CI, Young CS, Winter PF. Prospective evaluation of fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 1996; 23:1588–1593.

    CAS  PubMed  Google Scholar 

  20. Adler LP, Faulhaber PF, Schnur KC, Al-Kasi NL, Shenk RR. Axillary lymph node metastases: screening with [F-18] 2-deoxy-2-fluoro-d-glucose (FDG) PET. Radiology 1997; 203:323–327.

    CAS  PubMed  Google Scholar 

  21. Smith IC, Ogston KN, Whitford P, Smith FW, Sharp P, Norton M, Miller ID, Ah-See AK, Heys SD, Jibril JA, Eremin O. Staging of the axilla in breast cancer: accurate in vivo assessment using positron emission tomography with 2-(fluorine-18)-fluoro-2-deoxy-d-glucose. Ann Surg 1998; 228:220–227.

    Article  CAS  PubMed  Google Scholar 

  22. Hubner KF, Smith GT, Thie JA, Bell JL, Nelson HS, Hanna WT. The potential of F-18-FDG PET in breast cancer. Detection of primary lesions, axillary lymph node metastases, or distant metastases. Clin Positron Imaging 2000; 3:197–205.

    Article  PubMed  Google Scholar 

  23. Greco M, Crippa F, Agresti R, Seregni E, Gerali A, Giovanazzi R, Micheli A, Asero S, Ferraris C, Gennaro M, Bombardieri E, Cascinelli N. Axillary lymph node staging in breast cancer by 2-fluoro-2-deoxy-d-glucose-positron emission tomography: clinical evaluation and alternative management. J Natl Cancer Inst 2001; 93:630–635.

    Google Scholar 

  24. Ivancevic VV, Wolter A, Winzer K, Aldinger H, Muller JM, Munz DL. Intraindividual Comparison of F-18-Fluorodeoxyglucose and Tc-99m-tetrofosmin in planar scintimammography and SPECT. Clin Positron Imaging 2000; 3:17–29.

    Article  PubMed  Google Scholar 

  25. Yutani K, Shiba E, Kusuoka H, Tatsumi M, Uehara T, Taguchi T, Takai SI, Nishimura T. Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis. J Comput Assist Tomogr 2000; 24:274–280.

    Article  CAS  PubMed  Google Scholar 

  26. Guller U, Nitzsche EU, Schirp U, Viehl CT, Torhorst J, Moch H, Langer I, Marti WR, Oertli D, Harder F, Zuber M. Selective axillary surgery in breast cancer patients based on positron emission tomography with18F-fluoro-2-deoxy-d-glucose: not yet! Breast Cancer Res Treat 2002; 71:171–173.

    Article  PubMed  Google Scholar 

  27. van der Hoeven JJ, Hoekstra OS, Comans EF, Pijpers R, Boom RP, van Geldere D, Meijer S, Lammertsma AA, Teule GJ. Determinants of diagnostic performance of [F-18]fluorodeoxyglucose positron emission tomography for axillary staging in breast cancer. Ann Surg 2002; 236:619–624.

    PubMed  Google Scholar 

  28. Barranger E, Grahek D, Antoine M, Montravers F, Talbot JN, Uzan S. Evaluation of fluorodeoxyglucose positron emission tomography in the detection of axillary lymph node metastases in patients with early-stage breast cancer. Ann Surg Oncol 2003; 10:622–627.

    Article  PubMed  Google Scholar 

  29. Wahl RL, Siegel BA, Coleman RE, Gatsonis CG, PET Study Group. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 2004; 22:277–285.

    PubMed  Google Scholar 

  30. Sehweil AM, McKillop JH, Milroy R, Wilson R, Abdel-Dayem HM, Omar YT. Mechanism of201Tl uptake in tumours. Eur J Nucl Med 1989; 15:376–379.

    CAS  PubMed  Google Scholar 

  31. Sehweil AM, McHillop JH, Milroy R, Sayed MA, Ziada G, Banham SW, Davidson KG, Ragib A, Omar YT, Abdel-Dayem HM. Tl-201 scintigraphy in staging of lung cancer, breast cancer and lymphoma. Nucl Med Commun 1990; 11:263–269.

    CAS  PubMed  Google Scholar 

  32. Waxman AD, Ramanna L, Memsic LD, Foster CF, Silberman AW, Gleischman SH, Brenner RJ, Brachman MB, Kuhar CJ, Yadegar J. Thallium scintigraphy in evaluation of mass abnormalities of the breast. J Nucl Med 1993; 34:18–23.

    CAS  PubMed  Google Scholar 

  33. Takahashi T, Moriya E, Miyamoto Y, Kawakami K, Kubo H, Uchida T. The usefulness of201TlCl scintigraphy for the diagnosis of breast tumor. Nippon Igaku Hoshasen Gakkai Zasshi 1994; 54:644–649.

    CAS  PubMed  Google Scholar 

  34. Cimitan M, Volpe R, Candiani E, Gusso G, Ruffo R, Borsatti E, Massarut S, Rossi C, Morassut S, Carbone A. The use of thallium-201 in the preoperative detection of breast cancer: an adjunct to mammography and ultrasonography. Eur J Nucl Med 1995; 22:1110–1117.

    CAS  PubMed  Google Scholar 

  35. Bootsma AH, van Eijck C, Schouten KK, Reubi JC, Waser B, Foekens JA, van Pel R, Zwarthoff EC, Lamberts SW, de Klein A. Somatostatin receptor-positive primary breast tumors: genetic, patient and tumor characteristic. Int J Cancer 1993; 28:357–362.

    Google Scholar 

  36. van Eijck CH, Krenning EP, Bootsma A, Oei HY, van Pel R, Lindemans J, Jeekel J, Reubi JC, Lamberts SW. Somatostatin-receptor scintigraphy in primary breast cancer. Lancet 1994; 343:640–643.

    PubMed  Google Scholar 

  37. Skanberg J, Ahlman H, Benjegard SA, Fjalling M, Forssell-Aronsson EB, Hashemi SH, Nilsson O, Suurkula M, Jansson S. Indium-111-octreotide scintigraphy, intraoperative gamma-detector localization and somatostatin receptor expression in primary human breast cancer. Breast Cancer Res Treat 2002; 74:101–111.

    Article  CAS  PubMed  Google Scholar 

  38. Rodrigues M, Chehne F, Kalinowska W, Berghammer P, Zielinski C, Sinzinger H. Uptake of99mTc-MIBI and 99mTc-tetrofosmin into malignant versus nonmalignant breast cell lines. J Nucl Med 2000; 41:1495–1499.

    CAS  PubMed  Google Scholar 

  39. Arbab AS, Koizumi K, Toyama K, Araki T. Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 1996; 37:1551–1556.

    CAS  PubMed  Google Scholar 

  40. Bernard BF, Krenning EP, Breeman WA, Ensing G, Benjamins H, Bakker WH, Visser TJ, de Jong M.99mTc-MIBI, 99mTc-tetrofosmin and 99mTc-Q12 in vitro and in vivo. Nucl Med Biol 1998; 25:233–240.

    Article  CAS  PubMed  Google Scholar 

  41. Arbab AS, Koizumi K, Toyama K, Arai T, Araki T. Ion transport systems in the uptake of99Tcm-tetrofosmin, 99Tcm-MIBI and 201Tl in a tumor cell line. Nucl Med Commun 1997; 18:235–240.

    CAS  PubMed  Google Scholar 

  42. Caner B, Kitapci M, Aras T, Erbengi G, Ugur O, Bekdik C. Increased accumulation of hexakis (2-methoxyisobutylisonitrile) technetium (I) in osteosarcoma and its metastatic lymph nodes. J Nucl Med 1991; 32:1977–1978.

    CAS  PubMed  Google Scholar 

  43. O’Tuama LA, Packard AB, Treves ST. SPECT imaging of pediatric brain tumor with hexakis (methoxyisobutylisonitrile) technetium (I). J Nucl Med 1990; 31:2040–2041.

    CAS  PubMed  Google Scholar 

  44. Kao CH, Wang SJ, Lin WY, Liao SQ, Yeh SH. Differentiation of single solid lesions in the lungs by means of single-photon emission tomography with technetium methoxyisobutylisonitrile. Eur J Nucl Med 1993; 20:249–254.

    CAS  PubMed  Google Scholar 

  45. Lind P, Gallowitsch HJ, Langsteger W, Kresnik E, Mikosch P, Gomez I. Technetium-99m-tetrofosmin whole-body scintigraphy in the follow-up of differentiated thyroid carcinoma. J Nucl Med 1997; 38:348–352.

    CAS  PubMed  Google Scholar 

  46. Schillaci O, Monteleone F, D’Andrea N, Picardi V, Cangemi R, Cangemi V, Scopinaro F. Technetium-99 tetrofosmin single photon emission computer tomography in the evaluation of suspected lung cancer. Cancer Biother Radiopharm 1999; 14:129–134.

    CAS  PubMed  Google Scholar 

  47. Choi JY, Kim SE, Shin HJ, Kim BT, Kim JH. Brain tumor imaging with99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J Neurooncol 2000; 46:63–70.

    Article  CAS  PubMed  Google Scholar 

  48. Lee JK, Tsai SC, Ho YJ, Changlai SP, Kao CH. Technetium-99m tetrofosmin scintigraphy for detecting malignant lymphomas. Anticancer Res 2001; 21:1509–1513.

    CAS  PubMed  Google Scholar 

  49. Schillaci O, Spanu A, Scopinaro F, Monteleone F, Masala S, Tarantino U, Madeddu G, Simonetti G. Technetium-99m tetrofosmin scintigraphy in pediatric osteogenic sarcoma. Oncol Rep 2003; 10:605–608.

    PubMed  Google Scholar 

  50. Spanu A, Ginesu F, Pirina P, Solinas ME, Schillaci O, Farris A, Chessa F, Madeddu G, Marongiu P, Falchi A, Nuvoli S, Madeddu G. The usefulness of99mTc-tetrofosmin SPECT in the detection of intrathoracic malignant lesions. Int J Oncol 2003; 22:639–649.

    PubMed  Google Scholar 

  51. Alonso O, Martinez M, Delgado L, De Leon A, De Boni D, Lago G, Garces M, Fontes F, Espasandin J, Priario J. Staging of regional lymph nodes in melanoma patients by means of99mTc-MIBI scintigraphy. J Nucl Med 2003; 44:1561–1565.

    PubMed  Google Scholar 

  52. Spanu A, Madeddu G, Cottoni F, Manca A, Migaleddu V, Chessa F, Masala MV, Cossu A, Falchi A, Mura MS, Madeddu G. Usefulness of99mTc-tetrofosmin scintigraphy in different variants of Kaposi’s sarcoma. Oncology 2003; 65:295–305.

    Article  CAS  PubMed  Google Scholar 

  53. Khalkhali I, Mena I, Diggles L. Review of imaging techniques for the diagnosis of breast cancer: a new role of prone scintimammography using technetium-99m sestamibi. Eur J Nucl Med 1994; 21:357–362.

    CAS  PubMed  Google Scholar 

  54. Khalkhali I, Cutrone J, Mena I, Diggles L, Venegas R, Vargas H, Jackson B, Klein S. Technetium-99m-sestamibi scintimammography of breast lesions: clinical and pathological follow-up. J Nucl Med 1995; 36:1784–1789.

    CAS  PubMed  Google Scholar 

  55. Palmedo H, Schomburg A, Grunwald F, Mallmann P, Krebs D, Biersack HJ. Technetium-99m-MIBI scintimammography for suspicious breast lesions. J Nucl Med 1996; 37:626–630.

    CAS  PubMed  Google Scholar 

  56. Waxman AD. The role of99mTc methoxyisobutylisonitrile in imaging breast cancer. Semin Nucl Med 1997; 27:40–54.

    CAS  PubMed  Google Scholar 

  57. Mansi L, Rambaldi PF, Procaccini E, Di Gregorio F, Laprovitera A, Pecori B, Del Vecchio W. Scintimammography with technetium-99m tetrofosmin in the diagnosis of breast cancer and lymph node metastases. Eur J Nucl Med 1996; 23:932–939.

    CAS  PubMed  Google Scholar 

  58. Ortapamuk H, Ozmen MM, Ibis S, Naldoken S, Aksoy F. Role of technetium tetrofosmin scintimammography in the diagnosis of malignant breast masses and axillary lymph node involvement: a comparative study with mammography and histopathology. Eur J Surg 1999; 165:1147–1153.

    Article  CAS  PubMed  Google Scholar 

  59. Khalkhali I, Villanueva-Meyer J, Edell SL, Connolly JL, Schnitt SJ, Baum JK, Houlihan MJ, Jenkins RM, Haber SB. Diagnostic accuracy of99mTc-seatamibi breast imaging: multicenter trial results. J Nucl Med 2000; 41:1973–1979.

    CAS  PubMed  Google Scholar 

  60. Nishiyama Y, Yamamoto Y, Ono Y, Irie A, Yamauchi A, Satoh K, Ohkawa M. Comparative evaluation of99mTc-MIBI and 99mTc-HMDP scintimammography for the diagnosis of breast cancer and its axillary metastases. Eur J Nucl Med 2001; 28:522–528.

    Article  CAS  PubMed  Google Scholar 

  61. Spanu A, Dettori G, Nuvoli S, Porcu A, Falchi A, Cottu P, Solinas ME, Scanu AM, Chessa F, Madeddu G.99mTc-tetrofosmin SPET in the detection of both primary breast cancer and axillary lymph node metastasis. Eur J Nucl Med 2001; 28:1781–1794.

    Article  CAS  PubMed  Google Scholar 

  62. Taillefer R, Roubidoux A, Turpin S, Lambert R, Cantin J, Lèveillè J. Metastatic axillary lymph node technetium-99m-MIBI imaging in primary breast cancer. J Nucl Med 1998; 39:459–464.

    CAS  PubMed  Google Scholar 

  63. Cwikla JB, Buscombe JR, Parbhoo SP, Kelleher SM, Thakrar DS, Hinton J, Crow J, Deery A, Hilson AJ. Use of99Tcm-MIBI in the assessment of patients with suspected recurrent breast cancer. Nucl Med Commun 1998; 19:649–655.

    CAS  PubMed  Google Scholar 

  64. Yildiz A, Garipagaoglu M, Gungor F, Boz A, Dalmaz G. The role of technetium-99m methoxyisobutyl isonitrile scintigraphy in suspected recurrent breast cancer. Cancer Biother Radiopharm 2001; 16:163–169.

    Article  CAS  PubMed  Google Scholar 

  65. Spanu A, Farris A, Schillaci O, Chessa F, Solinas ME, Falchi A, Madeddu G, Nuvoli S, Madeddu G. The usefulness of99mTc tetrofosmin scintigraphy in patients with breast cancer recurrences. Nucl Med Commun 2003; 24:145–154.

    Article  CAS  PubMed  Google Scholar 

  66. Ballinger JR, Bannerman J, Boxen I, Firby P, Hartman NG, Moore MJ. Technetium-99m-tetrofosmin as a substrate for P-glycoprotein: in vitro studies in multidrug-resistant breast tumor cells. J Nucl Med 1996; 37:1578–1582.

    CAS  PubMed  Google Scholar 

  67. Kostakoglu L, Ruacan S, Ergun EL, Sayek I, Elahi N, Bekdik CF. Influence of the heterogeneity of P-glycoprotein expression on technetium-99m-MIBI uptake in breast cancer. J Nucl Med 1998; 39:1021–1026.

    CAS  PubMed  Google Scholar 

  68. Tabuenca MJ, Vargas JA, Varela A, Salas C, Durantez A, Ortiz Berrocal J. Technetium-99m-tetrofosmin scintigraphy, P-glycoprotein and lung cancer. J Nucl Med 1998; 39:1830–1831.

    CAS  Google Scholar 

  69. Mekhmandarov S, Sandbank J, Cohen M, Lelcuk S, Lubin E. Technetium-99m-MIBI scintimammography in palpable and non-palpable breast lesions. J Nucl Med 1998; 39:86–91.

    CAS  PubMed  Google Scholar 

  70. Howart D, Sillar R, Clark D, Lan L. Technetium-99m sestamibi scintimammography: the influence of histopathological characteristics, lesion size and the presence of carcinoma in situ in the detection of breast carcinoma. Eur J Nucl Med 1999; 26:1475–1481.

    Article  CAS  PubMed  Google Scholar 

  71. Schillaci O, Scopinaro F, Spanu A, Donnetti M, Danieli R, Di Luzio E, Madeddu G, David V. Detection of axillary lymph node metastases in breast cancer with Tc-99m tetrofosmin scintigraphy. Int J Oncol 2002; 20:483–487.

    PubMed  Google Scholar 

  72. Aziz A, Hashmi R, Ogawa Y, Hayashi K. Tc-99m-MIBI scintimammography; SPECT versus planar imaging. Cancer Biother Radiopharm 1999; 14:495–500.

    CAS  PubMed  Google Scholar 

  73. Obwegeser R, Berghammer P, Rodrigues M, Granegger S, Hohlagschwandtner M, Kucera H, Singer C, Berger A, Kubista E, Sinzinger H. A head-to-head comparison between technetium-99m-tetrofosmin and technetium-99m-MIBI scintigraphy to evaluate suspicious breast lesions. Eur J Nucl Med 1999; 26:1553–1559.

    Article  CAS  PubMed  Google Scholar 

  74. Spanu A, Schillaci O, Meloni GB, Porcu A, Cottu P, Nuvoli S, Falchi A, Chessa F, Solinas ME, Madeddu G. The usefulness of99mTc-tetrofosmin SPECT scintimammography in the detection of small size primary breast carcinomas. Int J Oncol 2002; 21:831–840.

    PubMed  Google Scholar 

  75. Tiling R, Tatsch K, Sommer H, Meyer G, Pechmann M, Gebauer K, Münzing W, Linke R, Khalkhali I, Hahn K. Technetium-99m-sestamibi scintimammography for the detection of breast carcinoma: comparison between planar and SPECT imaging. J Nucl Med 1998; 39:849–856.

    CAS  PubMed  Google Scholar 

  76. Chiti A, Maffioli LS, Agresti R, Spinelli A, Savelli G, Castellani MR, Giovanazzi R, Greco M, Bombardieri E. Axillary node metastasis detection in breast cancer with99mTc-sestamibi and 111In-pentetreotide. Tumori 1997; 83:537–538.

    CAS  PubMed  Google Scholar 

  77. Chiti A, Agresti R, Maffioli LS, Tomasic G, Savelli G, Crippa F, Pilotti S, Greco M, Bombardieri E. Breast cancer staging using technetium-99m sestamibi and indium-111 pentetreotide single-photon emission tomography. Eur J Nucl Med 1997; 24:192–196.

    CAS  PubMed  Google Scholar 

  78. Schillaci O, Scopinaro F, Danieli R, Tavolaro R, Cannas P, Picardi V, Colella AC. Technetium-99m sestamibi imaging in the detection of axillary lymph node involvement in patients with breast cancer. Anticancer Res 1997; 17:1607–1610.

    CAS  PubMed  Google Scholar 

  79. Spanu A, Dettori G, Chiaramida P, Cottu P, Falchi A, Porcu A, Solinas ME, Nuvoli S, Madeddu G. The role of99mTc-tetrofosmin pinhole-SPECT in breast cancer axillary lymph node staging. Cancer Biother Radiopharm 2000; 15:81–91.

    CAS  PubMed  Google Scholar 

  80. Spanu A, Tanda F, Dettori G, Manca A, Chessa F, Porcu A, Falchi A, Nuvoli S, Madeddu G. The role of99mTc-tetrofosmin pinhole-SPECT in breast cancer non-palpable axillary lymph node metastases detection. Q J Nucl Med 2003; 47:116–128.

    CAS  PubMed  Google Scholar 

  81. Weber DA, Ivanovic M, Franceschi D, Strand S-E, Erlandsson K, Franceschi M, Atkins HL, Coderre JA, Susskind H, Button T, Ljunggren K. Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 1994; 35:342–348.

    CAS  Google Scholar 

  82. Yukihiro M, Inoue T, Iwasaki T, Tomiyoshi K, Erlandsson K, Endo K. Myocardial infarction in rats: high-resolution single-photon emission tomographic imaging with a pinhole collimator. Eur J Nucl Med 1996; 23:896–900.

    CAS  PubMed  Google Scholar 

  83. Acton PD, Choi S-R, Plössl K, Kung HF. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002: 29:691–698.

    Google Scholar 

  84. Booij J, de Bruin K, Habraken JBA, Voorn P. Imaging of dopamine transporters in rats using high-resolution pinhole single-photon emission tomography. Eur J Nucl Med Mol Imaging 2002; 29:1221–1224.

    Article  CAS  PubMed  Google Scholar 

  85. Scherfler C, Donnemiller E, Schocke M, Dierkes K, Decristoforo C, Oberladstätter M, Kolbitsch C, Zschiegner F, Riccabona G, Poewe W, Wenning G. Evaluation of striatal dopamine transporter function in rats by in vivo β-[123I]CIT pinhole SPECT. NeuroImage 2002; 17:128–141.

    Article  PubMed  Google Scholar 

  86. Wu MC, Gao D-W, Sievers RE, Lee RJ, Hasegawa BH, Dae MW. Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. J Am Coll Cardiol 2003; 42:576–582.

    Article  PubMed  Google Scholar 

  87. Bennink RJ, van Montfrans C, de Jong WJ, de Bruin K, van Deventer SJ, de Velde AA. Imaging of intestinal lymphocyte homing by means of pinhole SPECT in a TNBS colitis mouse model. Eur J Nucl Med Mol Imaging 2004; 31:93–101.

    CAS  Google Scholar 

  88. Wanet PM, Sand A, Abramovici J. Physical and clinical evaluation of high-resolution thyroid pinhole tomography. J Nucl Med 1996; 37:2017–2020.

    CAS  PubMed  Google Scholar 

  89. Krausz Y, Wilk M, Saliman F, Chisin R. Role of high-resolution pinhole tomography in the evaluation of thyroid abnormalities. Thyroid 1997; 7:847–852.

    CAS  PubMed  Google Scholar 

  90. Bahk YW, Chung SK, Park YH, Kim SH, Lee HK. Pinhole SPECT imaging in normal and morbid ankles. J Nucl Med 1998; 39:130–139.

    CAS  PubMed  Google Scholar 

  91. Spanu A, Solinas ME, Chiaramida P, Falchi A, Bagella C, Solinas P, Masia A, Nuvoli S, Madeddu G. Tc-99m tetrofosmin (T) pinhole (P) SPECT in neck metastases from differentiated thyroid carcinoma. Eur J Nucl Med 1998; 25 (Suppl):934.

    Google Scholar 

  92. Spanu A, Migaleddu V, Manca A, Falchi A, Marongiu P, Pisu N, Chessa F, Madeddu G. The usefulness of single photon emission computerized tomography with pinhole collimator (P-SPECT) in preoperative localization of hyperfunctioning parathyroid glands in patients with secondary hyperparathyroidism. Radiol Med 2003; 106:399–412.

    Google Scholar 

  93. Spanu A, Falchi A, Manca A, Marongiu P, Cossu A, Pisu N, Chessa F, Nuvoli S, Madeddu G. The usefulness of neck pinhole SPECT as a complementary tool to planar scintigraphy in primary and secondary hyperparathyroidism. J Nucl Med 2004; 45:40–48.

    PubMed  Google Scholar 

  94. Chiaramida P, Spanu A, Madeddu G. 180° Pinhole (P) SPECT and 360° (C) SPECT spatial resolution. An experimental model. Q J Nucl Med 1998; 42(Suppl):11.

  95. Spanu A, Dettori G, Chessa F, Porcu A, Cottu P, Solinas P, Falchi A, Solinas ME, Scanu AM, Nuvoli S, Madeddu G.99mTc-tetrofosmin pinhole-SPECT (P-SPECT) and radioguided sentinel node (SN) biopsy and in breast cancer axillary lymph node staging. Cancer Biother Radiopharm 2001; 16:501–513.

    Article  CAS  PubMed  Google Scholar 

  96. Spanu A, Dettori G, Chessa F, Porcu A, Stochino MB, Cottu P, Falchi A, Madeddu G. Radioguided sentinel node (SN) biopsy vs99mTc-tetrofosmin axillary pinhole-SPECT (P-SPECT) in the prediction of breast cancer (BC) axillary lymph node status. 2nd Congress of the World Society of Breast Health, Budapest. 2003:47.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Madeddu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madeddu, G., Spanu, A. Use of tomographic nuclear medicine procedures, SPECT and pinhole SPECT, with cationic lipophilic radiotracers for the evaluation of axillary lymph node status in breast cancer patients. Eur J Nucl Med Mol Imaging 31 (Suppl 1), S23–S34 (2004). https://doi.org/10.1007/s00259-004-1524-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-004-1524-y

Keywords

Navigation