Skip to main content

Advertisement

Log in

Musculoskeletal trauma and artificial intelligence: current trends and projections

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Musculoskeletal trauma accounts for a significant fraction of emergency department visits and patients seeking urgent care, with a high financial cost to society. Diagnostic imaging is indispensable in the workup and management of trauma patients. However, diagnostic imaging represents a complex multifaceted system, with many aspects of its workflow prone to inefficiencies or human error. Recent technological innovations in artificial intelligence and machine learning have shown promise to revolutionize our systems for providing medical care to patients. This review will provide a general overview of the current state of artificial intelligence and machine learning applications in different aspects of trauma imaging and provide a vision for how such applications could be leveraged to enhance our diagnostic imaging systems and optimize patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stinner DJ, Edwards D. Surgical management of musculoskeletal trauma. Surg Clin N Am. 2017. https://doi.org/10.1016/j.suc.2017.06.005.

    Article  PubMed  Google Scholar 

  2. Kim PK. Radiology for trauma and the general surgeon. Surg Clin N Am. 2017. https://doi.org/10.1016/j.suc.2017.06.014.

    Article  PubMed  Google Scholar 

  3. Bruno MA, Walker EA, Abujudeh HH. Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction. Radiographics. 2015. https://doi.org/10.1148/rg.2015150023.

    Article  PubMed  Google Scholar 

  4. Selvarajan SK, Levin DC, Parker L. The increasing use of emergency department imaging in the United States: is it appropriate? Am J Roentgenol. 2019;213(4):W180–4. https://doi.org/10.2214/AJR.19.21386.

    Article  Google Scholar 

  5. Chetlen AL, Chan TL, Ballard DH, et al. Addressing burnout in radiologists. Acad Radiol. 2019;26(4):526–33. https://doi.org/10.1016/j.acra.2018.07.001.

    Article  PubMed  Google Scholar 

  6. Hallas P, Ellingsen T. Errors in fracture diagnoses in the emergency deparment - characteristics of patients and diurnal variation. BMC Emerg Med. 2006. https://doi.org/10.1186/1471-227X-6-4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015. https://doi.org/10.1038/nature14539.

    Article  PubMed  Google Scholar 

  8. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017. https://doi.org/10.1007/s12194-017-0406-5.

    Article  PubMed  Google Scholar 

  9. Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019. https://doi.org/10.1148/radiol.2018180547.

    Article  PubMed  Google Scholar 

  10. Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P. Artificial intelligence in musculoskeletal imaging: review of current literature, challenges, and trends. Semin Musculoskelet Radiol. 2019. https://doi.org/10.1055/s-0039-1684024.

    Article  PubMed  Google Scholar 

  11. Chea P, Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 2020. https://doi.org/10.1007/s00256-019-03284-z.

    Article  PubMed  Google Scholar 

  12. Gorelik N, Chong J, Lin DJ. Pattern recognition in musculoskeletal imaging using artificial intelligence. Semin Musculoskelet Radiol. 2020;24(1):38–49. https://doi.org/10.1055/s-0039-3400266.

    Article  PubMed  Google Scholar 

  13. Kalmet PHS, Sanduleanu S, Primakov S, et al. Deep learning in fracture detection: a narrative review. Acta Orthop. 2020;91(2):215–20. https://doi.org/10.1080/17453674.2019.1711323.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Langerhuizen DWG, Janssen SJ, Mallee WH, et al. What are the applications and limitations of artificial intelligence for fracture detection and classification in orthopaedic trauma imaging? A systematic review. Clin Orthop Relat Res. 2019. https://doi.org/10.1097/CORR.0000000000000848.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP. Artificial intelligence in musculoskeletal imaging: current status and future directions. Am J Roentgenol. 2019. https://doi.org/10.2214/AJR.19.21117.

    Article  Google Scholar 

  16. Rajpurkar P, Irvin J, Bagul A, et al. MURA: Large dataset for abnormality detection in musculoskeletal radiographs. arXiv. Published online 2017.

  17. Lindsey R, Daluiski A, Chopra S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A. 2018;115(45):11591–6. https://doi.org/10.1073/pnas.1806905115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krogue JD, Cheng KV, Hwang KM, et al. Automatic hip fracture identification and functional subclassification with deep learning. Radiol Artif Intell. 2020;2(2):e190023. https://doi.org/10.1148/ryai.2020190023.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jones RM, Sharma A, Hotchkiss R, et al. Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med. 2020;3(1):144. https://doi.org/10.1038/s41746-020-00352-w.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Langerhuizen DWG, Bulstra AEJ, Janssen SJ, et al. Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid? Clin Orthop Relat Res. 2020. https://doi.org/10.1097/CORR.0000000000001318.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aghnia Farda N, Lai J-Y, Wang J-C, Lee P-Y, Liu J-W, Hsieh I-H. Sanders classification of calcaneal fractures in CT images with deep learning and differential data augmentation techniques. Injury. Published online September 16, 2020. https://doi.org/10.1016/j.injury.2020.09.010.

  22. Chung SW, Han SS, Lee JW, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 2018. https://doi.org/10.1080/17453674.2018.1453714.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krogue JD, Cheng K, Hwang KM, et al. Automatic hip fracture identification and functional subclassification with deep learning. arXiv. Published online 2019. https://doi.org/10.1148/ryai.2020190023

  24. Tanzi L, Vezzetti E, Moreno R, Aprato A, Audisio A, Massè A. Hierarchical fracture classification of proximal femur X-ray images using a multistage deep learning approach. Eur J Radiol. 2020. https://doi.org/10.1016/j.ejrad.2020.109373.

    Article  PubMed  Google Scholar 

  25. Olczak J, Emilson F, Razavian A, Antonsson T, Stark A, Gordon M. Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification. Acta Orthop. Published online 2020. https://doi.org/10.1080/17453674.2020.1837420

  26. Zhou QQ, Tang W, Wang J, et al. Automatic detection and classification of rib fractures based on patients’ CT images and clinical information via convolutional neural network. Eur Radiol. 2020. https://doi.org/10.1007/s00330-020-07418-z.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pranata YD, Wang KC, Wang JC, et al. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images. Comput Methods Prog Biomed. 2019;171:27–37. https://doi.org/10.1016/j.cmpb.2019.02.006.

    Article  Google Scholar 

  28. Tomita N, Cheung YY, Hassanpour S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med. 2018;98:8–15. https://doi.org/10.1016/j.compbiomed.2018.05.011.

    Article  PubMed  Google Scholar 

  29. Mutasa S, Varada S, Goel A, Wong TT, Rasiej MJ. Advanced deep learning techniques applied to automated femoral neck fracture detection and classification. J Digit Imaging. 2020. https://doi.org/10.1007/s10278-020-00364-8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bien N, Rajpurkar P, Ball RL, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018. https://doi.org/10.1371/journal.pmed.1002699.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liu F, Guan B, Zhou Z, et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell. 2019. https://doi.org/10.1148/ryai.2019180091.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Couteaux V, Si-Mohamed S, Nempont O, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn Interv Imaging. 2019. https://doi.org/10.1016/j.diii.2019.03.002.

    Article  PubMed  Google Scholar 

  33. Roblot V, Giret Y, BouAntoun M, et al. Artificial intelligence to diagnose meniscus tears on MRI. Diagn Interv Imaging. 2019. https://doi.org/10.1016/j.diii.2019.02.007.

    Article  PubMed  Google Scholar 

  34. Liu F, Zhou Z, Samsonov A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection. Radiology. 2018;289(1):160–9. https://doi.org/10.1148/radiol.2018172986.

    Article  PubMed  Google Scholar 

  35. Willemink MJ, Koszek WA, Hardell C, et al. Preparing medical imaging data for machine learning. Radiology. 2020. https://doi.org/10.1148/radiol.2020192224.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Oakden-Rayner L. Exploring large-scale public medical image datasets. Acad Radiol. 2020. https://doi.org/10.1016/j.acra.2019.10.006.

    Article  PubMed  Google Scholar 

  37. Badgeley MA, Zech JR, Oakden-Rayner L, et al. Deep learning predicts hip fracture using confounding patient and healthcare variables. npj Digit Med. 2019;2(1):31. https://doi.org/10.1038/s41746-019-0105-1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018. https://doi.org/10.1371/journal.pmed.1002683.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hendrickx LAM, Sobol GL, Langerhuizen DWG, et al. A machine learning algorithm to predict the probability of (occult) posterior malleolar fractures associated with tibial shaft fractures to guide “malleolus first” fixation. J Orthop Trauma. 2020. https://doi.org/10.1097/BOT.0000000000001663.

    Article  PubMed  Google Scholar 

  40. A machine learning algorithm to identify patients with tibial shaft fractures at risk for infection after operative treatment. J Bone Jt Surg. Published online 2020. https://doi.org/10.2106/jbjs.20.00903.

  41. O’Neill TJ, Xi Y, Stehel E, et al. Active reprioritization of the reading worklist using artificial intelligence has a beneficial effect on the turnaround time for interpretation of head CT with intracranial hemorrhage. Radiol Artif Intell. 2021. https://doi.org/10.1148/ryai.2020200024.

    Article  PubMed  Google Scholar 

  42. Recht MP, Zbontar J, Sodickson DK, et al. Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study. Am J Roentgenol. 2020;215(6):1421–9. https://doi.org/10.2214/AJR.20.23313.

    Article  Google Scholar 

  43. Dreizin D, Zhou Y, Fu S, et al. A multiscale deep learning method for quantitative visualization of traumatic hemoperitoneum at CT: assessment of feasibility and comparison with subjective categorical estimation. Radiol Artif Intell. 2020. https://doi.org/10.1148/ryai.2020190220.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dreizin D, Zhou Y, Chen T, et al. Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: potential role in personalized forecasting and decision support. J Trauma Acute Care Surg. Published online 2020. https://doi.org/10.1097/TA.0000000000002566.

  45. O’Connor SD, Graffy PM, Zea R, Pickhardt PJ. Does nonenhanced CT-based quantification of abdominal aortic calcification outperform the Framingham risk score in predicting cardiovascular events in asymptomatic adults? Radiology. 2019. https://doi.org/10.1148/radiol.2018180562.

    Article  PubMed  Google Scholar 

  46. Bachmann KN, Bruno AG, Bredella MA, et al. Vertebral strength and estimated fracture risk across the BMI spectrum in women. J Bone Miner Res. 2016. https://doi.org/10.1002/jbmr.2697.

    Article  PubMed  Google Scholar 

  47. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013;158(8):588–95. https://doi.org/10.7326/0003-4819-158-8-201304160-00003.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang B, Torriani M. Artificial intelligence in the evaluation of body composition. Semin Musculoskelet Radiol. 2020;24(1):30–7. https://doi.org/10.1055/s-0039-3400267.

    Article  PubMed  Google Scholar 

  49. Boutin RD, Lenchik L. Value-added opportunistic CT: insights into osteoporosis and sarcopenia. Am J Roentgenol. 2020. https://doi.org/10.2214/AJR.20.22874.

    Article  Google Scholar 

  50. Orces CH. Emergency department visits for fall-related fractures among older adults in the USA: a retrospective cross-sectional analysis of the National Electronic Injury Surveillance System All Injury Program, 2001–2008. BMJ Open. 2013. https://doi.org/10.1136/bmjopen-2012-001722.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen KW, Chang SF, Lin PL. Frailty as a predictor of future fracture in older adults: a systematic review and meta-analysis. Worldviews Evidence-Based Nurs. 2017;14(4):282–93. https://doi.org/10.1111/wvn.12222.

    Article  Google Scholar 

  52. Hall DE, Arya S, Schmid KK, et al. Association of a frailty screening initiative with postoperative survival at 30, 180, and 365 days. JAMA Surg. 2017. https://doi.org/10.1001/jamasurg.2016.4219.

  53. Castillo-Angeles M, Cooper Z, Jarman MP, Sturgeon D, Salim A, Havens JM. Association of frailty with morbidity and mortality in emergency general surgery by procedural risk level. JAMA Surg. Published online November 25, 2020. https://doi.org/10.1001/jamasurg.2020.5397.

  54. Wang B, Torriani M. Artificial intelligence in the evaluation of body composition. Semin Musculoskelet Radiol. 2020;24:30–7. https://doi.org/10.1055/s-0039-3400267.

    Article  PubMed  Google Scholar 

  55. Bridge CP, Rosenthal M, Wright B, et al. Fully-automated analysis of body composition from CT in cancer patients using convolutional neural networks. In: Stoyanov D, Taylor Z, Sarikaya D, et al., eds. OR 2.0 context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis. Springer International Publishing; 2018:204–213.

  56. Weston AD, Korfiatis P, Kline TL, et al. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology. 2019;290(3):669–79. https://doi.org/10.1148/radiol.2018181432.

    Article  PubMed  Google Scholar 

  57. Kaplan SJ, Pham TN, Arbabi S, et al. Association of radiologic indicators of frailty with 1-year mortality in older trauma patients: opportunistic screening for sarcopenia and osteopenia. JAMA Surg. 2017;152(2):1–8. https://doi.org/10.1001/jamasurg.2016.4604.

    Article  Google Scholar 

  58. Leeper CM, Lin E, Hoffman M, et al. Computed tomography abbreviated assessment of sarcopenia following trauma. J Trauma Acute Care Surg. Published online 2016. https://doi.org/10.1097/ta.0000000000000989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laur, O., Wang, B. Musculoskeletal trauma and artificial intelligence: current trends and projections. Skeletal Radiol 51, 257–269 (2022). https://doi.org/10.1007/s00256-021-03824-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03824-6

Keywords

Navigation