Skip to main content

Advertisement

Log in

“Modeling ancient Egyptian embalming”: radiological assessment of experimentally mummified human tissue by CT and MRI

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess changes in different tissues during the process of artificial mummification by natron using computed tomography (CT) and magnetic resonance imaging (MRI), and to translate the results to image interpretation in paleoradiological studies of ancient mummies.

Materials and methods

A human lower limb (LL) was amputated from a female donor 24 h post-mortem and mummified by artificial natron (54 % NaCl, 16 % Na2SO4, 18 % Na2CO3 12 % NaHCO3) in ancient Egyptian style. The LL was kept in a fume hood at 16–25 °C and 30–75 % relative humidity. CT and MRI were performed at specific intervals with quantitative evaluation of Hounsfield units (HU) and signal intensities (SI).

Results

Evaluated tissues showed different HU and SI changes during the experimental mummification. All tissues revealed an overall but varying increase of HU in CT examinations. All tissues except for the compact bone revealed an overall but varying decrease of SI in the IR and T2-weighted sequences of the MRI. Typical findings included a distinct increase of HU in the cutis at the end of the study and a temporary increase of SI in the IR and T2-weighted sequences in all muscle groups.

Conclusions

Radiological findings showed a regular, controlled and effective dehydration by the applied natron without detectable putrefaction. Evaluated tissues revealed different radiological changes during the experiment, which altogether led to preservation of the tissues without radiologically identifiable destruction. The cutis revealed radiological signs of direct interaction with the natron in the form of covering and possibly permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aufderheide AC. The scientific study of mummies. Cambridge: Cambridge University Press; 2003.

    Google Scholar 

  2. Pennisi E. Evolutionary medicine. Darwin applies to medical school. Science. 2009;10:162–3.

    Article  Google Scholar 

  3. Kupfer B, Vehreschild J, Cornely O, Kaiser R. Leishmaniasis in Ancient Egypt and Upper Nubia. Emerg Infect Dis. 2006;12:1616–7.

    Article  Google Scholar 

  4. Zink A, Sola C, Reischl U, Grabner W. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Res. 2003;41:359–67.

    CAS  Google Scholar 

  5. Taubenberger J, Reid A, Krafft A, Bijwaard K. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science. 1997;275:1793–6.

    Article  PubMed  CAS  Google Scholar 

  6. Chhem RK, Brothwell DR. Paleoradiology. Imaging mummies and fossils. Berlin: Springer; 2008.

    Google Scholar 

  7. König W. 14 Photographien von Röntgen-Strahlen aufgenommen im physikalischen Verein zu Frankfurt a. M. Leipzig: Barth; 1896.

    Google Scholar 

  8. Harwood-Nash DC. Computed tomography of ancient Egyptian mummies. J Comput Assist Tomogr. 1979;3:768–73.

    PubMed  CAS  Google Scholar 

  9. O’Brien JJ, Battista JJ, Romagnoli C, Chhem RK. CT imaging of human mummies: a critical review of the literature (1979–2005). Int J Osteoarchaeol. 2009;19:90–8.

    Article  Google Scholar 

  10. Hoffman H, Torres WE, Ernst RD. Paleoradiology: advanced CT in the evaluation of nine Egyptian mummies. RadioGraphics. 2002;22:377–85.

    PubMed  Google Scholar 

  11. Cesarani F, Martina MC, Boano R, et al. Multidetector CT study of gallbladder stones in a wrapped Egyptian mummy. RadioGraphics. 2009;29:1191–4.

    Article  PubMed  Google Scholar 

  12. Notman D. Nuclear magnetic resonance imaging of an Egyptian mummy. Paleopathol Newsl. 1983;43:9.

    Google Scholar 

  13. Hunt D. Non-invasive investigations of human mummified remains by radiographic techniques. In: Spindler K, editor. Human mummies. A global survey of their status and the techniques of conservation. Wien: Springer; 1996. p. 15–31.

    Chapter  Google Scholar 

  14. Appelboom T, Struyven J. Medical imaging of the Peruvian mummy Rascar Capac. Lancet. 1999;354:2153–5.

    Article  PubMed  CAS  Google Scholar 

  15. Piepenbrink H, Frahm J, Haase A, Matthaei D. Nuclear magnetic resonance imaging of mummified corpses. Am J Phys Anthropol. 1986;70:27–8.

    Article  PubMed  CAS  Google Scholar 

  16. Rühli FJ, von Waldburg H, Nielles-Vallespin S, Böni T, Speier P. Clinical magnetic resonance imaging of ancient dry human mummies without rehydration. JAMA. 2007;298:2618–20.

    Article  PubMed  Google Scholar 

  17. Öhrström LM, von Waldburg H, Peier P, Bock M, Suri RE, Rühli FJ. MR imaging versus CT of ancient Peruvian and Egyptian mummified tissues. RadioGraphics. 2013;33:291–6.

    Article  PubMed  Google Scholar 

  18. Hübener KH, Pahl WM. Computertomographische Untersuchungen an altägyptischen Mumien. Fortschr Röntgenstr. 1981;135:213–9.

    Article  Google Scholar 

  19. Rühli F. Radiological aspects and interpretation of post mortem artefacts in ancient Egyptian mummies from Swiss collections. Int J Osteoarcheol. 2000;10:153–7.

    Article  Google Scholar 

  20. Rühli F, Chhem R, Böni T. Diagnostic paleoradiology of mummified tissue: interpretation and pitfalls. Can Assoc Radiol J. 2004;55:218–27.

    PubMed  Google Scholar 

  21. Feix J. Herodot: Historien 1/2. Zweisprachige Ausgabe: Griechisch-Deutsch. Düsseldorf: Artemis & Winkler; 2000.

    Google Scholar 

  22. Pettigrew TJ. History of Egyptian mummies. London: Longman, Rees, More, Brown, Green and Longman; 1834.

    Google Scholar 

  23. Dawson WR. Making a mummy. J Egypt Archeol. 1927;13:40–9.

    Article  Google Scholar 

  24. Lucas A. The use of natron in mummification. J Egypt Archeol. 1932;18:125–40.

    Article  Google Scholar 

  25. Brier B, Wade R. The use of natron in human mummification: a modern experiment. Z Ägypt Sprache Altertumskunde. 1997;124:89–100.

    Google Scholar 

  26. Zimmerman MR, Brier B, Wade RS. Brief communication: twentieth-century replication of an Egyptian mummy: implications for paleopathology. Am J Phys Anthropol. 1998;107:417–20.

    Article  PubMed  CAS  Google Scholar 

  27. Lucas A, Harris JR. Ancient Egyptian materials and industries. 4th ed. London: Edward Arnold; 1962.

    Google Scholar 

  28. Garner RC. Experimental mummification. In: David AR, editor. The Manchester Museum Mummy Project. Manchester: Manchester University Press; 1979. p. 19–24.

    Google Scholar 

  29. Garner RC. Experimental mummification of rats. In: David AR, editor. Sciences in Egyptology. Manchester: Manchester University Press; 1986. p. 11–2.

    Google Scholar 

  30. Notman DNH, Aufderheide AC. Experimental mummification and computed imaging. In: Proceedings of the First World Congress on Mummy Studies. Santa Cruz, Tenerife, Canary Islands: Archaeological and Ethnographical Museum of Tenerife; 1992. pp. 821–828.

  31. May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ. Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, pitfalls. RadioGraphics. 2000;20:S295–315.

    PubMed  Google Scholar 

  32. Nguyen B, Brandser E, Rubin DA. Pains, strains, and fasciculations. Lower extremity disorders. Magn Reson Imaging Clin N Am. 2000;8:391–408.

    PubMed  CAS  Google Scholar 

  33. Fee D, Waclawik A. Diabetic muscle infarction: a poorly understood, rare complication of long-standing diabetes mellitus. J Ky Med Assoc. 2007;105:485–90.

    PubMed  Google Scholar 

  34. Fleckenstein JL, Watumull D, Conner KE, et al. Denervated human skeletal muscle: MR imaging evaluation. Radiology. 1993;187:213–8.

    PubMed  CAS  Google Scholar 

  35. West A, Haynor DR, Goodkin R, et al. Magnetic resonance imaging signal changes in denervated muscles after peripheral nerve injury. Neurosurgery. 1994;35:1077–86.

    Article  PubMed  CAS  Google Scholar 

  36. Küllmer K, Sievers KW, Reimers CD, et al. Changes of sonographic, magnetic resonance tomographic, electromyographic, and histopathologic findings within a 2-month period of examinations after experimental muscle denervation. Arch Orthop Trauma Surg. 1998;117:228–34.

    Article  PubMed  Google Scholar 

  37. Münnemann K, Böni T, Colacicco G, Blümich B, Rühli F. Noninvasive 1H and 23Na nuclear magnetic resonance imaging of ancient Egyptian human mummified tissue. Magn Reson Imaging. 2007;25:1341–5.

    Article  PubMed  Google Scholar 

  38. Wanek J, Speller R, Rühli F. Direct action of radiation on mummified cells: modeling of computed tomography by Monte Carlo algorithms. Radiat Environ Biophys. 2013. doi:10.1007/s00411-013-0471-z.

    PubMed  Google Scholar 

  39. Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ. Virtopsy: minimally invasive, imaging-guided virtual autopsy. RadioGraphics. 2006;26:1305–33.

    Article  PubMed  Google Scholar 

  40. Van der Made AD, Maas M, Beenen LF, Oostra RJ, Kerkhoffs GM. Postmortem imaging exposed: an aid in MR imaging of musculoskeletal structures. Skeletal Radiol. 2013;42:467–72.

    Article  PubMed  Google Scholar 

  41. Tyler DJ, Robson MD, Henkelman RM, Young IR, Bydde GM. Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations. J Magn Reson Imaging. 2007;25:279–89.

    Article  PubMed  Google Scholar 

  42. Omoumi P, Bae WC, Du J, et al. Meniscal calcifications: morphologic and quantitative evaluation by using2D inversion-recovery ultrashort echo time and 3D ultrashort echo time 3.0-T MR imaging techniques—feasibility study. Radiology. 2012;264:260–8.

    Article  PubMed  Google Scholar 

  43. Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson. 2010;207:304–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Panzer.

Additional information

Grant support

Swiss National Science Foundation (Nr. 325130_120662), Mäxi Foundation Zurich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panzer, S., Borumandi, F., Wanek, J. et al. “Modeling ancient Egyptian embalming”: radiological assessment of experimentally mummified human tissue by CT and MRI. Skeletal Radiol 42, 1527–1535 (2013). https://doi.org/10.1007/s00256-013-1696-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1696-2

Keywords

Navigation