Skip to main content
Log in

Carbon-11-methionine positron emission tomography imaging of chordoma

  • Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Chordoma is a rare malignant bone tumor that arises from notochord remnants. This is the first trial to investigate the utility of 11C-methionine (MET) positron emission tomography (PET) in the imaging of chordoma before and after carbon-ion radiotherapy (CIRT).

Design and patients

Fifteen patients with chordoma were investigated with MET-PET before and after CIRT and the findings analyzed visually and quantitatively. Tumor MET uptake was evaluated by tumor-to-nontumor ratio (T/N ratio).

Results

In 12 (80%) patients chordoma was clearly visible in the baseline MET-PET study with a mean T/N ratio of 3.3±1.7. The MET uptake decreased significantly to 2.3±1.4 after CIRT (P<0.05). A significant reduction in tumor MET uptake of 24% was observed after CIRT. Fourteen (93%) patients showed no local recurrence after CIRT with a median follow-up time of 20 months.

Conclusion

This study has demonstrated that MET-PET is feasible for imaging of chordoma. MET-PET could provide important tumor metabolic information for the therapeutic monitoring of chordoma after CIRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2A–D
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baratti D, Gronchi A, Pennacchioli E, et al. Chordoma: natural history and results in 28 patients treated at a single institution. Ann Surg Oncol 2003; 10:291-296.

    Article  CAS  PubMed  Google Scholar 

  2. Mindell ER. Chordoma. J Bone Joint Surg Am 1981; 63:501–505.

    CAS  PubMed  Google Scholar 

  3. Breteau N, Demasure M, Lescrainier J, Sabbattier R, Michenet P. Sacrococcygeal chordomas: potential role of high LET therapy. Recent Results Cancer Res 1998; 150:148-155.

    CAS  PubMed  Google Scholar 

  4. Watkins L, Khudados ES, Kaleoglu M, Revesz T, Sacares P, Crockard HA. Skull base chordomas: a review of 38 patients, 1958–88. Br J Neurosurg 1993; 7:241-248.

    CAS  PubMed  Google Scholar 

  5. Gay E, Sekhar LN, Rubinstein E, et al. Chordomas and chondrosarcomas of the cranial base: results and follow-up of 60 patients. Neurosurgery 1995; 36:887-897.

    CAS  PubMed  Google Scholar 

  6. Al-Mefty O, Borba LA. Skull base chordomas: a management challenge. J Neurosurg 1997; 86:182-189.

    CAS  PubMed  Google Scholar 

  7. Krayenbuhl H, Yasargil MG. Cranial chordomas. Progr Neurol Surg 1975; 6:380–434.

    Google Scholar 

  8. Benk V, Liebsch NJ, Munzenrider JE, Efird J, McManus P, Suit H. Base of skull and cervical spine chordomas in children treated by high-dose irradiation. Int J Radiat Oncol Biol Phys 1995; 31:577–581.

    Article  CAS  PubMed  Google Scholar 

  9. Castro JR, Collier JM, Petti PL, et al. Charged particle radiotherapy for lesions encircling the brain stem or spinal cord. Int J Radiat Oncol Biol Phys 1989; 17:477–484.

    CAS  PubMed  Google Scholar 

  10. Kamada T, Tsujii H, Tsuji H, et al. Working Group for the Bone and Soft Tissue Sarcomas. Efficacy and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. J Clin Oncol 2002; 20:4466–4471.

    Article  CAS  PubMed  Google Scholar 

  11. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Natl Rev Cancer 2002; 2:683–693.

    Article  CAS  Google Scholar 

  12. Zhang H, Tian M, Oriuchi N, Higuch, T, Tanada S, Endo K. Oncological diagnosis using positron coincidence gamma camera with fluorodeoxyglucose in comparison with dedicated PET. Br J Radiol 2002; 75:409–416.

    CAS  PubMed  Google Scholar 

  13. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992; 33:1972―1980.

    CAS  PubMed  Google Scholar 

  14. Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991; 32:1485–1490.

    CAS  PubMed  Google Scholar 

  15. Hautzel H, Muller-Gartne, HW. Early changes in fluorine-18-FDG uptake during radiotherapy. J Nucl Med 1997; 38:1384–1386.

    CAS  PubMed  Google Scholar 

  16. Hoffman RM. Unbalanced transmethylation and the perturbation of the differentiated state leading to cancer. Bioessays 1990; 12:163–166.

    CAS  PubMed  Google Scholar 

  17. Kracht LW, Friese M, Herholz K, et al. Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 2003; 30:868―873.

    CAS  PubMed  Google Scholar 

  18. Kubota R, Kubota K, Yamada S, et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 1995; 36:484–492.

    CAS  PubMed  Google Scholar 

  19. Schaider H, Haberkorn U, Berger MR, Oberdorfer F, Morr I, van Kaick G. Application of alpha-aminoiosbutyric acid,l-methionine, thymidine and 2-fluoro-2-d-glucose to monitor effects of chemotherapy in a human colon carcinoma cell line. Eur J Nucl Med 1996; 23:55–60.

    CAS  PubMed  Google Scholar 

  20. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-d-glucose, l-methionine, thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 1993; 34:773–779.

    CAS  PubMed  Google Scholar 

  21. Kubota K, Ishiwata K, Kubota R, et al. Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-18-fluorodeoxyuridine,l-[methyl-14C] methionine, [6-3H]thymidine, and gallium-67. J Nucl Med 1991; 32:2118–2123.

    CAS  PubMed  Google Scholar 

  22. Minn H, Clavo AC, Grenman R, Wahl RL. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose andl-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med 1‘995; 36:252–258.

  23. Stern PH, Hoffman RM. Elevated overall rates of transmethylation in cell lines from diverse human tumors. In Vitro 1984; 20:663–670.

    CAS  PubMed  Google Scholar 

  24. Stern PH, Wallace CD, Hoffman RM. Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 1984; 119:29–34.

    CAS  PubMed  Google Scholar 

  25. Wheatley DN. On the problem of linear incorporation of amino acids into cell protein. Experientia 1982; 38:818–820.

    CAS  PubMed  Google Scholar 

  26. Weiss SW. WHO international histological classification of tumours. Histological typing of soft tissue tumours, 2nd edn. Berlin Heidelberg New York: Springer, 1994.

  27. Langstrom B, Antoni G, Gullberg P, et al. Synthesis ofl-and d-[methy-11C]methionine. J Nucl Med 1987; 19:1037–1040.

    Google Scholar 

  28. Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Joensuu H. Uptake of11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer 1991; 64:1121―1124.

    CAS  PubMed  Google Scholar 

  29. Munzenrider JE, Liebsch NJ. Proton therapy for tumors of the skull base. Strahlenther Onkol 1999;175(Suppl 2):57–63.

    Google Scholar 

  30. Hug EB, Loredo LN, Slater JD, et al. Proton radiation therapy for chordomas and chondrosarcomas of the skull base. J Neurosurg 1999; 91:432–439.

    CAS  PubMed  Google Scholar 

  31. Verstraete KL, Lang P. Post-therapeutic magnetic resonance imaging of bone tumors. Top Magn Reson Imaging 1999; 10:237–246.

    CAS  PubMed  Google Scholar 

  32. Fletcher BD. Effects of pediatric cancer therapy on the musculoskeletal system. Pediatr Radiol 1997; 27:623–636.

    Article  CAS  PubMed  Google Scholar 

  33. Murphy WA Jr. Imaging bone tumors in the 1990s. Cancer 1991; 67:1169–1176.

    PubMed  Google Scholar 

  34. Hawkins DS, Rajendran JG, Conrad EU 3rd, Bruckner JD, Eary JF. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer 2002; 94:3277–3284.

    Article  CAS  PubMed  Google Scholar 

  35. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 1996; 14:700–708.

    CAS  PubMed  Google Scholar 

  36. Muhr C, Gudjonsson O, Lilja A, Hartman M, Zhang ZJ, Langstrom B. Meningioma treated with interferon-alpha, evaluated with [11C]-l-methionine positron emission tomography. Clin Cancer Res 2001; 7:2269―2276.

    CAS  PubMed  Google Scholar 

  37. Andersson T, Wilander E, Eriksson B, Lindgren PG, Oberg K. Effects of interferon on tumor tissue content in liver metastases of human carcinoid tumors. Cancer Res 1990; 50:3413―3415.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyosan Yoshikawa.

Additional information

This study was part of the 10-Year Strategy for Cancer Control of the Japanese Government and was supported by the Ministry of Education, Science and Technology of Japan Government

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Yoshikawa, K., Tamura, K. et al. Carbon-11-methionine positron emission tomography imaging of chordoma. Skeletal Radiol 33, 524–530 (2004). https://doi.org/10.1007/s00256-004-0815-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-004-0815-5

Keywords

Navigation