Skip to main content

Advertisement

Log in

Chordoma: 18F-FDG PET/CT and MRI imaging features

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Examine the 18F-FDG PET/CT and MRI imaging characteristics of chordoma.

Materials and methods

Biopsy-proven chordoma with a pre-therapy 18F-FDG PET/CT from 2001 through 2019 in patients > 18 years old were retrospectively reviewed. Multiple PET/CT and MRI imaging parameters were assessed.

Results

A total of 23 chordoma patients were included (16 M, 7 F; average age of 60.1 ± 13.0 years) with comparative MRI available in 22 cases. This included 13 sacrococcygeal, 9 mobile spine, and one clival lesions. On 18F-FDG PET/CT, chordomas demonstrated an average SUVmax of 5.8 ± 3.7, average metabolic tumor volume (MTV) of 160.2 ± 263.8 cm3, and average total lesion glycolysis (TLG) of 542.6 ± 1210 g. All demonstrated heterogeneous FDG activity. On MRI, chordomas were predominantly T2 hyperintense (22/22) and T1 isointense (18/22), contained small foci of T1 hyperintensity (17/22), and demonstrated heterogeneous enhancement (14/20). There were no statistically significant associations found between 18F-FDG PET/CT and MRI imaging features. There was no relationship of SUVmax (p = 0.53), MTV (p = 0.47), TLG (p = 0.48), maximal dimension (p = 0.92), or volume (p = 0.45) to the development of recurrent or metastatic disease which occurred in 6/22 patients over a mean follow-up duration of 4.1 ± 2.0 years.

Conclusion

On 18F-FDG PET/CT imaging, chordomas demonstrate moderate, heterogeneous FDG uptake. Predominant T2 hyperintensity and small foci of internal increased T1 signal are common on MRI. The inherent FDG avidity of chordomas suggests that 18F-FDG PET/CT may be a useful modality for staging, evaluating treatment response, and assessing for recurrent or metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yamaguchi T, et al. Benign notochordal cell tumors: a comparative histological study of benign notochordal cell tumors, classic chordomas, and notochordal vestiges of fetal intervertebral discs. Am J Surg Pathol. 2004;28(6):756–61.

    Article  PubMed  Google Scholar 

  2. Bjornsson J, et al. Chordoma of the mobile spine. A clinicopathologic analysis of 40 patients. Cancer. 1993;71(3):735–40.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer JE, et al. Chordomas: their CT appearance in the cervical, thoracic and lumbar spine. Radiology. 1984;153(3):693–6.

    Article  CAS  PubMed  Google Scholar 

  4. Unni KK, Inwards CY. Dahlin’s bone tumors: general aspects and data on 10,165 cases. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkin; 2010.

  5. Gerber S, et al. Imaging of sacral tumours. Skelet Radiol. 2008;37(4):277–89.

    Article  CAS  Google Scholar 

  6. Stacchiotti S, Sommer J. Building a global consensus approach to chordoma: a position paper from the medical and patient community. Lancet Oncol. 2015;16(2):e71–83.

    Article  PubMed  Google Scholar 

  7. McPherson CM, et al. Metastatic disease from spinal chordoma: a 10-year experience. J Neurosurg Spine. 2006;5(4):277–80.

    Article  PubMed  Google Scholar 

  8. Young VA, et al. Characteristics and patterns of metastatic disease from chordoma. Sarcoma. 2015;2015:517657.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Suga K, et al. F-18 FDG PET/CT monitoring of radiation therapeutic effect in hepatic epithelioid hemangioendothelioma. Clin Nucl Med. 2009;34(3):199–202.

    Article  PubMed  Google Scholar 

  10. Sung MS, et al. Sacrococcygeal chordoma: MR imaging in 30 patients. Skelet Radiol. 2005;34(2):87–94.

    Article  Google Scholar 

  11. Smolders D, et al. Value of MRI in the diagnosis of non-clival, non-sacral chordoma. Skelet Radiol. 2003;32(6):343–50.

    Article  CAS  Google Scholar 

  12. Murphey MD, et al. From the archives of the AFIP. Primary tumors of the spine: radiologic pathologic correlation. Radiographics. 1996;16(5):1131–58.

    Article  CAS  PubMed  Google Scholar 

  13. Cui J-F, et al. Computed tomography and magnetic resonance imaging features of cervical chordoma. Oncol Lett. 2018;16(1):861–5.

    PubMed  PubMed Central  Google Scholar 

  14. Si M-J, et al. Differentiation of primary chordoma, giant cell tumor and schwannoma of the sacrum by CT and MRI. Eur J Radiol. 2013;82(12):2309–15.

    Article  PubMed  Google Scholar 

  15. Lin CY, et al. Chordoma detected on F-18 FDG PET. Clin Nucl Med. 2006;31(8):506–7.

    Article  PubMed  Google Scholar 

  16. Park SA, Kim HS. F-18 FDG PET/CT evaluation of sacrococcygeal chordoma. Clin Nucl Med. 2008;33(12):906–8.

    Article  PubMed  Google Scholar 

  17. Cui F, et al. Humeral metastasis of sacrococcygeal chordoma detected by fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography: a case report. Radiol Case Rep. 2018;13(2):449–52.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ochoa-Figueroa MA, et al. Role of 18F-FDG PET-CT in the study of sacrococcygeal chordoma. Rev Esp Med Nucl Imagen Mol. 2012;31(6):359–61.

    CAS  PubMed  Google Scholar 

  19. Derlin T, Sohns JM, Hueper K. 68Ga-DOTA-TATE PET/CT for molecular imaging of somatostatin receptor expression in metastasizing chordoma: comparison with 18F-FDG. Clin Nucl Med. 2017;42(4):e210–1.

    Article  PubMed  Google Scholar 

  20. Miyazawa N, et al. Thoracic chordoma: review and role of FDG-PET. J Neurosurg Sci. 2008;52(4):117–21 discussion 121-2.

    CAS  PubMed  Google Scholar 

  21. Sridhar P, et al. FDG PET metabolic tumor volume segmentation and pathologic volume of primary human solid tumors. AJR Am J Roentgenol. 2014;202(5):1114–9.

    Article  PubMed  Google Scholar 

  22. Werner-Wasik M, et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys. 2012;82(3):1164–71.

    Article  PubMed  Google Scholar 

  23. Obara P, et al. Quantification of metabolic tumor activity and burden in patients with non-small-cell lung cancer: is manual adjustment of semiautomatic gradient-based measurements necessary? Nucl Med Commun. 2015;36(8):782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stacchiotti S, et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol. 2012;30(9):914–20.

    Article  CAS  PubMed  Google Scholar 

  25. Darby AJ, et al. Vertebral intra-osseous chordoma or giant notochordal rest? Skelet Radiol. 1999;28(6):342–6.

    Article  CAS  Google Scholar 

  26. Yamaguchi T, et al. Distinguishing benign notochordal cell tumors from vertebral chordoma. Skelet Radiol. 2008;37(4):291–9.

    Article  Google Scholar 

  27. Kyriakos M. Benign notochordal lesions of the axial skeleton: a review and current appraisal. Skelet Radiol. 2011;40(9):1141–52.

    Article  Google Scholar 

  28. Kreshak J, et al. Difficulty distinguishing benign notochordal cell tumor from chordoma further suggests a link between them. Cancer Imaging. 2014;14(1):4–4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chambers PW, Schwinn CP. Chordoma. A clinicopathologic study of metastasis. Am J Clin Pathol. 1979;72(5):765–76.

    Article  CAS  PubMed  Google Scholar 

  30. Chang C, et al. Osseous metastases of chordoma: imaging and clinical findings. Skelet Radiol. 2017;46(3):351–8.

    Article  Google Scholar 

  31. Delank KS, et al. Metastasizing chordoma of the lumbar spine. Eur Spine J. 2002;11(2):167–71.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kishimoto R, et al. Imaging characteristics of metastatic chordoma. Jpn J Radiol. 2012;30(6):509–16.

    Article  PubMed  Google Scholar 

  33. Rohatgi S, et al. Metastatic Chordoma: report of the two cases and review of the literature. Eurasian J Med. 2015;47(2):151–4.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Houdek MT, et al. Low dose radiotherapy is associated with local complications but not disease control in sacral chordoma. J Surg Oncol. 2019;119(7):856–63.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Di Maio S, et al. Novel targeted therapies in chordoma: an update. Ther Clin Risk Manag. 2015;11:873–83.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hindi N, et al. Imatinib in advanced chordoma: a retrospective case series analysis. Eur J Cancer. 2015;51(17):2609–14.

    Article  CAS  PubMed  Google Scholar 

  37. Schulz-Ertner D, et al. Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int J Radiat Oncol Biol Phys. 2007;68(2):449–57.

    Article  PubMed  Google Scholar 

  38. Chetan MR, et al. Role of diffusion-weighted imaging in monitoring treatment response following high-intensity focused ultrasound ablation of recurrent sacral chordoma. Radiol Case Rep. 2019;14(10):1197–201.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Santos P, et al. T1-weighted dynamic contrast-enhanced MR perfusion imaging characterizes tumor response to radiation therapy in chordoma. AJNR Am J Neuroradiol. 2017;38(11):2210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Afaq A, Andreou A, Koh DM. Diffusion-weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging. 2010;10(1A):S179–88.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Preda L, et al. Predictive role of apparent diffusion coefficient (ADC) from diffusion weighted MRI in patients with sacral chordoma treated with carbon ion radiotherapy (CIRT) alone. Eur J Radiol. 2020;126:108933.

    Article  PubMed  Google Scholar 

  42. Roth C, et al. Simultaneous F18-FDG-PET/MR optimized treatment planning in a young patient with sacro-coccygeal chordoma. Klin Padiatr. 2018;230(6):326–7.

    Article  PubMed  Google Scholar 

  43. Rakheja R, et al. Correlating metabolic activity on 18F-FDG PET/CT with histopathologic characteristics of osseous and soft-tissue sarcomas: a retrospective review of 136 patients. Am J Roentgenol. 2012;198(6):1409–16.

    Article  Google Scholar 

  44. Bastiaannet E, et al. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev. 2004;30(1):83–101.

    Article  CAS  PubMed  Google Scholar 

  45. Lim HJ, et al. Utility of positron emission tomography/computed tomography (PET/CT) imaging in the evaluation of sarcomas: a systematic review. Crit Rev Oncol Hematol. 2019;143:1–13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Broski.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement of informed consent

The need for informed consent was waived by the Institutional Review Board.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, J.T., Wenger, D.E., Rose, P.S. et al. Chordoma: 18F-FDG PET/CT and MRI imaging features. Skeletal Radiol 50, 1657–1666 (2021). https://doi.org/10.1007/s00256-021-03723-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03723-w

Keywords

Navigation