Skip to main content

Advertisement

Log in

18FDG PET scanning of benign and malignant musculoskeletal lesions

  • Newer Technology
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To describe the technique, applications and advantages of 18FDG PET scanning in detection, analysis and management of musculoskeletal lesions.

Design and patients

Forty-five patients (19 males,26 females) aged 9 to 81 years had radiographs, routine radionuclide scans, CT and/or MRI of clinically suspected active benign or malignant musculoskeletal lesions. 18FDG scans with a Siemens ECAT EXACT 921 dedicated PET unit (Knoxville, Tenn.) and FWH=6 mm images acquired as a 5–6 bed examination (6 min emission and 4 min transmission) used OSEM iterative reconstruction with segmented transmission attenuation correction and a Gaussian filter (cutoff 6.7 mm). Region of interest (ROI) 3×3 pixel image analysis based on transverse whole body images (slice thickness 3.37 mm) generated Maximum Standard Uptake Values (Max SUV) with a cutoff of 2.0 used to distinguish benign and malignant lesions.

Results

Thirty-nine studies were available for SUV ROI analysis. Overall sensitivity for differentiating malignant from benign osseous and non-osseous lesions was 91.7% (22/24), overall specificity was 100% (11/11) with an accuracy of 91.7%. All aggressive lesions had a Max SUV >2.0. Data separating benign from malignant lesions and aggressive from benign lesions were statistically significant (P<0.001) in both categories. There was no statistically significant difference in distinguishing aggressive from malignant lesions (P, ns).

Conclusion

18FDG PET contributes unique information regarding metabolism of musculoskeletal lesions. By supplying a physiologic basis for more informed treatment and management, it influences prognosis and survival. Moreover, since residual, recurrent or metastatic tumors can be simultaneously documented on a single whole body scan, PET may theoretically prove to be cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A–C.
Fig. 4A–C.
Fig. 5A, B.
Fig. 6A, B.
Fig. 7.

Similar content being viewed by others

References

  1. Blau M, Nagler W, Bender MA. Fluorine-18 a new isotope for bone scanning. J Nucl Med 1962; 3:332–334.

    CAS  Google Scholar 

  2. Som P, Atkins, HL, Bandaypadhyay D, et al. A fluorinated glucose analog, 2-fluoro-2-glucose (F18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980; 21:670–675.

    CAS  PubMed  Google Scholar 

  3. Warburg O. The metabolism of tumors. London: Constable, 1930:75–327.

  4. Schulte M, Brecht-Krauss D, Heymer B, et al. Grading of tumors and tumor-like lesions of bone: evaluation by FDG PET. J Nucl Med. 2000; 41:1695–1701.

    Google Scholar 

  5. Aoki J, Watanabe H, Shinozaki T, et al. FDG PET of primary benign and malignant bone tumors: standardized uptake value in 52 lesions. Radiology 2001; 219:774–777.

    CAS  PubMed  Google Scholar 

  6. Schirrmeister H, Guhlmann A, Elsner K, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus18F PET. J Nucl Med. 1999;40:1623–1629.

    Google Scholar 

  7. Sasaki M, Ichiya Y, Kuwabara Y, et al. Fluorine-18 fluorodeoxglucose positron emission tomography in technetium 99m hydroxymethylenediphosphate negative bone tumors. J Nucl Med 1993; 34:288–290.

    CAS  PubMed  Google Scholar 

  8. Garcia R, Kim EE, Wong FC, et al. Comparison of fluorine-18 FDG PET and technetium-99m-MIBI SPECT in evaluation of musculoskeletal sarcomas. J Nucl Med 1996; 37:1476–1479.

    CAS  PubMed  Google Scholar 

  9. Abdel-Dayem HM. The role of nuclear medicine in primary bone and soft tissue tumors. Semin Nucl Med. 1997; 27:355–363.

    Google Scholar 

  10. Kole AC, Nieweg OE, VanGinkel RJ, Pruim J, et al. Detection of local recurrence of soft-tissue sarcoma with positron emission tomography using 18-F fluorodeoxyglucose. Ann Surg Oncol 1997; 4:57–63.

    CAS  PubMed  Google Scholar 

  11. Schwartzbach M, Willeke F, Dimitrakopoulou-Strauss A, et al. Functional imaging and detection of local recurrence in soft tissue sarcomas by position emission tomography. Anticancer Res 1999; 19:1343–1350.

    CAS  PubMed  Google Scholar 

  12. Kern KA, Brunetti A, Nortn JA, et al. Metabolic imaging of human extremity musculoskeletal tumors by PET. J Nucl Med 1988; 29:181–186.

    CAS  PubMed  Google Scholar 

  13. Kole AC, Nieweg OE, Hoekstra HJ, et al. Fluorine-18 fluorodeoxyglucose assessment of glucose metabolism in bone tumors. J Nucl Med 1998; 39:810–815.

    CAS  PubMed  Google Scholar 

  14. Adler LP, Blair HF, Williams RP, et al. Grading liposarcoma with PET using (18F)FDG. J Comput Assist Tomogr 1990; 14:960–962.

    CAS  PubMed  Google Scholar 

  15. Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 1991; 32:1508–1512.

    CAS  PubMed  Google Scholar 

  16. Nieweg OE, Pruim J, VanGinkle RJ, et al. Fluorine-18 fluorodeoxyglucose PET imaging of soft tissue sarcoma. J Nucl Med 1996; 37:257–261.

    CAS  PubMed  Google Scholar 

  17. Griffeth LK, Dehdashti FD, McGire AH, et al. PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-d-glucose. Radiology 1992; 182:185–194.

    CAS  PubMed  Google Scholar 

  18. Lodge MA, Lucas JD, Marsken PK, et al. A PET study: 18-FDG uptake in soft tissue masses. Eur J Nucl Med 1999; 26:22–30.

    Article  PubMed  Google Scholar 

  19. Lucas JD, O'Doherthy MJ, Wong JC, et al. Evaluation of fluorodeoxyglucose positron emmision tomography in the management of soft tissue sarcomas. J Bone Joint Surg Br 1998; 80:441–447.

    CAS  PubMed  Google Scholar 

  20. Matthias HM, Schwarzback MD, Dimitrakopoulou-Strauss A, et al. Clinical value of (18F)fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg 2002; 231:380–386.

    Google Scholar 

  21. Eary JF, Conrad E, Bruckner JD, et al. Quantitative (F-18)fluorodeoxyglucose position emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res 1998; 4:1215–1220.

    CAS  PubMed  Google Scholar 

  22. Brudin LH, Valid SO, Rhodes CG, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med 1994; 21:297–305.

    CAS  PubMed  Google Scholar 

  23. Kubota R, Yamada S, Kubota K, et al. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissue studies by microautoradiography. J Nucl Med 1992; 33:1972–1980.

    CAS  PubMed  Google Scholar 

  24. Guhlmann A, Brechy-Krauss D, Suger G, et al. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology 1998; 206:749–754.

    CAS  PubMed  Google Scholar 

  25. Gamelli RL, Liu H, He L, et al. Augmentation of glucose transporter-1 in macrophages following thermal injury and sepsis in mice. J Leukoc Biol 1996; 59:639–647.

    CAS  PubMed  Google Scholar 

  26. Dehdashti FD, Siegel GA, Griffeth LK, et al. Benign versus malignant intraosseous lesions: discrimination by means of PET with 2-(F-18)fluoro-2-deoxy-d-glucose. Radiology 1996; 200:243–247.

    CAS  PubMed  Google Scholar 

  27. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-(fluorine-18)-fluoro-2-deoxy-d-glucose: variations with body weight and a method for correction. Radiology 1993; 189:847–850.

    CAS  PubMed  Google Scholar 

  28. Hamberg LM, Hunter GJ, Alpert NM, et al. The dose uptake ratio as an index of glucose metabolism: useful parameter of oversimplification. J Nucl Med 1994; 35:1308–1312.

    CAS  PubMed  Google Scholar 

  29. Wahl RL, Quint LE, Cieslak D, et al. Anatometabolic tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 1993; 34:1190–1197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieda Feldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, F., van Heertum, R. & Manos, C. 18FDG PET scanning of benign and malignant musculoskeletal lesions. Skeletal Radiol 32, 201–208 (2003). https://doi.org/10.1007/s00256-003-0623-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-003-0623-3

Keywords

Navigation