Skip to main content

Advertisement

Log in

Pictorial review of 18F-FDG PET/CT findings in musculoskeletal lesions

  • Review Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

We herein reviewed 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) findings in a number of musculoskeletal lesions including malignant tumors, benign tumors, and tumor-like lesions with correlations to other radiographic imaging modalities, and described the diversity of the 18F-FDG PET/CT findings of this entity. Malignant primary musculoskeletal tumors are typically 18F-FDG avid, whereas low-grade malignant tumors show mild uptake. Benign musculoskeletal tumors generally show a faint uptake of 18F-FDG, and tumor-like conditions also display various uptake patterns of 18F-FDG. Although musculoskeletal tumors show various uptakes of 18F-FDG on PET/CT, its addition to morphological imaging modalities such as CT and MRI is useful for the characterization and differentiation of musculoskeletal lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Choi YY, Kim JY, Yang SO. PET/CT in benign and malignant musculoskeletal tumors and tumor-like conditions. Semin Musculoskelet Radiol. 2014;18:133–48.

    Article  PubMed  Google Scholar 

  2. Sheikhbahaei S, Marcus C, Hafezi-Nejad N, Taghipour M, Subramaniam RM. Value of FDG PET/CT in patient management and outcome of skeletal and soft tissue sarcomas. PET Clin. 2015;10:375–93.

    Article  PubMed  Google Scholar 

  3. Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med. 2003;44:930–42.

    PubMed  Google Scholar 

  4. Costelloe CM, Chuang HH, Madewell JE. FDG PET/CT of primary bone tumors. AJR Am J Roentgenol. 2014;202:W521–31.

    Article  PubMed  Google Scholar 

  5. Even-Sapir E. PET/CT in malignant bone disease. Semin Musculoskelet Radiol. 2007;11:312–21.

    Article  PubMed  Google Scholar 

  6. Quartuccio N, Treglia G, Salsano M, Mattoli MV, Muoio B, Piccardo A, et al. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma. Radiol Oncol. 2013;47:97–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Byun BH, Kong CB, Park J, Seo Y, Lim I, Choi CW, et al. Initial metabolic tumor volume measured by 18F-FDG PET/CT can predict the outcome of osteosarcoma of the extremities. J Nucl Med. 2013;54:1725–32.

    Article  CAS  PubMed  Google Scholar 

  8. Rakheja R, Makis W, Skamene S, Nahal A, Brimo F, Azoulay L, et al. Correlating metabolic activity on 18F-FDG PET/CT with histopathologic characteristics of osseous and soft-tissue sarcomas: a retrospective review of 136 patients. AJR Am J Roentgenol. 2012;198:1409–16.

    Article  PubMed  Google Scholar 

  9. Folpe AL, Lyles RH, Sprouse JT, Conrad EU 3rd, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6:1279–87.

    CAS  PubMed  Google Scholar 

  10. Eary JF, Conrad EU, Bruckner JD, Folpe A, Hunt KJ, Mankoff DA, et al. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin Cancer Res. 1998;4:1215–20.

    CAS  PubMed  Google Scholar 

  11. Hongtao L, Hui Z, Bingshun W, Xiaojin W, Zhiyu W, Shuier Z, et al. 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol. 2012;21:e165–70.

    Article  PubMed  Google Scholar 

  12. Kong CB, Byun BH, Lim I, Choi CW, Lim SM, Song WS, et al. 18F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging. 2013;40:728–36.

    Article  CAS  PubMed  Google Scholar 

  13. Peller PJ. Role of positron emission tomography/computed tomography in bone malignancies. Radiol Clin N Am. 2013;51:845–64.

    Article  PubMed  Google Scholar 

  14. Quartuccio N, Fox J, Kuk D, et al. Pediatric bone sarcoma: diagnostic performance of 18F-FDG PET/CT versus conventional imaging for initial staging and follow-up. AJR Am J Roentgenol. 2015;204:153–60.

    Article  PubMed  Google Scholar 

  15. Thornton E, Krajewski KM, O’Regan KN, Giardino AA, Jagannathan JP, Ramaiya N. Imaging features of primary and secondary malignant tumours of the sacrum. Br J Radiol. 2012;85:279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Douis H, Saifuddin A. The imaging of cartilaginous bone tumours. II. Chondrosarcoma. Skelet Radiol. 2013;42:611–26.

    Article  CAS  Google Scholar 

  17. Brenner W, Conrad EU, Eary JF. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging. 2004;31:189–95.

    Article  PubMed  Google Scholar 

  18. Aoki J, Watanabe H, Shinozaki T, Tokunaga M, Inoue T, Endo K. FDG-PET in differential diagnosis and grading of chondrosarcomas. J Comput Assist Tomogr. 1999;23:603–8.

    Article  CAS  PubMed  Google Scholar 

  19. Jesus-Garcia R, Osawa A, Filippi RZ, Viola DC, Korukian M, de Carvalho Campos Neto G, et al. Is PET-CT an accurate method for the differential diagnosis between chondroma and chondrosarcoma? Springerplus. 2016;5:236.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miyazawa N, Ishigame K, Kato S, Satoh Y, Shinohara T. Thoracic chordoma: review and role of FDG-PET. J Neurosurg Sci. 2008;52:117–21.

    CAS  PubMed  Google Scholar 

  21. Mammar H, Kerrou K, Nataf V, Pontvert D, Clemenceau S, Lot G, et al. Positron emission tomography/computed tomography imaging of residual skull base chordoma before radiotherapy using fluoromisonidazole and fluorodeoxyglucose: potential consequences for dose painting. Int J Radiat Oncol Biol Phys. 2012;84:681–7.

    Article  PubMed  Google Scholar 

  22. Park SA, Kim HS. F-18 FDG PET/CT evaluation of sacrococcygeal chordoma. Clin Nucl Med. 2008;33:906–8.

    Article  PubMed  Google Scholar 

  23. Ochoa-Figueroa MA, Martínez-Gimeno E, Allende-Riera A, Cabello-García D, Muñoz-Iglesias J, Cárdenas-Negro C. Role of 18F-FDG PET-CT in the study of sacrococcygeal chordoma. Rev Esp Med Nucl Imagen Mol. 2012;31:359–61.

    CAS  PubMed  Google Scholar 

  24. O’Sullivan PJ, Harris AC, Munk PL. Radiological imaging features of non-uterine leiomyosarcoma. Br J Radiol. 2008;81:73–81.

    Article  PubMed  Google Scholar 

  25. Punt SE, Eary JF, O’Sullivan J, Conrad EU. Fluorodeoxyglucose positron emission tomography in leiomyosarcoma: imaging characteristics. Nucl Med Commun. 2009;30:546–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jagannathan JP, Tirumani SH, Ramaiya NH. Imaging in soft tissue sarcomas: current updates. Surg Oncol Clin N Am. 2016;25:645–75.

    Article  PubMed  Google Scholar 

  27. Tewfik JN, Greene GS. Fluorine-18-deoxyglucose-positron emission tomography imaging with magnetic resonance and computed tomographic correlation in the evaluation of bone and soft-tissue sarcomas: a pictorial essay. Curr Probl Diagn Radiol. 2008;37:178–88.

    Article  PubMed  Google Scholar 

  28. Crago AM, Dickson MA. Liposarcoma: multimodality management and future targeted therapies. Surg Oncol Clin N Am. 2016;25:761–73.

    Article  PubMed  Google Scholar 

  29. Murphey MD, Arcara LK, Fanburg-Smith J. From the archives of the AFIP: imaging of musculoskeletal liposarcoma with radiologic–pathologic correlation. Radiographics. 2005;25:1371–95.

    Article  PubMed  Google Scholar 

  30. Brenner W, Eary JF, Hwang W, Vernon C, Conrad EU. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging. 2006;33:1290–5.

    Article  PubMed  Google Scholar 

  31. Evilevitch V, Weber WA, Tap WD, Allen-Auerbach M, Chow K, Nelson SD, et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res. 2008;14:715–20.

    Article  CAS  PubMed  Google Scholar 

  32. Saboo SS, Krajewski KM, Zukotynski K, Howard S, Jagannathan JP, Hornick JL, et al. Imaging features of primary and secondary adult rhabdomyosarcoma. AJR Am J Roentgenol. 2012;199:W694–703.

    Article  PubMed  Google Scholar 

  33. Dong Y, Zhang X, Wang S, Chen S, Ma C. 18[F]FDG PET/CT is useful in initial staging, restaging for pediatric rhabdomyosarcoma. Q J Nucl Med Mol Imaging. 2015 (epub ahead of print).

  34. Van Rijn RR, Wilde JC, Bras J, Oldenburger F, McHugh KM, Merks JH. Imaging findings in noncraniofacial childhood rhabdomyosarcoma. Pediatr Radiol. 2008;38:617–34.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Federico SM, Spunt SL, Krasin MJ, Billup CA, Wu J, Shulkin B, et al. Comparison of PET-CT and conventional imaging in staging pediatric rhabdomyosarcoma. Pediatr Blood Cancer. 2013;60:1128–34.

    Article  PubMed  Google Scholar 

  36. Kis B, O’Regan KN, Agoston A, Javery O, Jagannathan J, Ramaiya NH. Imaging of desmoplastic small round cell tumour in adults. Br J Radiol. 2012;85:187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ostermeier A, McCarville MB, Navid F, Snyder SE, Shulkin BL. FDG PET/CT imaging of desmoplastic small round cell tumor: findings at staging, during treatment and at follow-up. Pediatr Radiol. 2015;45:1308–15.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang WD, Li CX, Liu QY, Hu YY, Cao Y, Huang JH. CT, MRI, and FDG-PET/CT imaging findings of abdominopelvic desmoplastic small round cell tumors: correlation with histopathologic findings. Eur J Radiol. 2011;80:269–73.

    Article  PubMed  Google Scholar 

  39. Fletcher CDM, Bridge JA, Pancreas CW, Hogendoorn PCW, Mertens F. WHO Classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC; 2013.

    Google Scholar 

  40. Sachpekidis C, Langer R, Kollàr A, Wartenberg J. Detection of a primary tumor in the area of the renal artery with 18F-FDG PET/CT in a patient with metastatic undifferentiated sarcoma and a history of mid-aortic syndrome: a case report. Medicine (Baltimore). 2016;95:e4622.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei WJ, Shen CT, Song HJ, Qiu ZL, Luo QY. Metastatic malignant fibrous histiocytoma infiltrating sigmoid colon: a case diagnosed with the help of 18F-FDG PET/CT. Clin Nucl Med. 2016;41:338–40.

    Article  PubMed  Google Scholar 

  42. Fang N, Wang YL, Zeng L, Wu ZJ, Cui XJ. Metastatic malignant fibrous histiocytoma in the stomach: imaging with 18F-FDG PET/CT. Clin Nucl Med. 2016;41:e123–4.

    Article  PubMed  Google Scholar 

  43. Li J, Geng ZJ, Lv XF, Zhang XK, Xie CM. Computed tomography and magnetic resonance imaging findings of malignant fibrous histiocytoma of the head and neck. Mol Clin Oncol. 2016;4:888–92.

    PubMed  PubMed Central  Google Scholar 

  44. Lin J, Martel W. Cross-sectional imaging of peripheral nerve sheath tumors: characteristic signs on CT, MR imaging, and sonography. AJR Am J Roentgenol. 2001;176:75–82.

    Article  CAS  PubMed  Google Scholar 

  45. Broski SM, Johnson GB, Howe BM, Nathan MA, Wenger DE, Spinner RJ, et al. Evaluation of 18F-FDG PET and MRI in differentiating benign and malignant peripheral nerve sheath tumors. Skelet Radiol. 2016;45:1097–105.

    Article  Google Scholar 

  46. Cardona S, Schwarzbach M, Hinz U, et al. Evaluation of F18-deoxyglucose positron emission tomography (FDG-PET) to assess the nature of neurogenic tumours. Eur J Surg Oncol. 2003;29:536–41.

    Article  CAS  PubMed  Google Scholar 

  47. Khiewan B, Macapinlac HA, Lev D, McCutcheon IE, Slopis JM, Al Sannaa G, et al. The value of 18F-FDG PET/CT in the management of malignant peripheral nerve sheath tumors. Eur J Nucl Med Mol Imaging. 2014;41:1756–66.

    Article  Google Scholar 

  48. Cha JG, Yoo JH, Kim HK, Park JM, Paik SH, Park SJ. PET/CT and MRI of intra-osseous haemangioma of the tibia. Br J Radiol. 2012;85:e94–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hatayama K, Watanabe H, Ahmed AR, Yanagawa T, Shinozaki T, Oriuchi N, et al. Evaluation of hemangioma by positron emission tomography: role in a multimodality approach. J Comput Assist Tomogr. 2003;27:70–7.

    Article  PubMed  Google Scholar 

  50. Matsumoto Y, Takahashi Y, Haraguchi A. Intraosseous hemangioma arising in the clavicle. Skelet Radiol. 2014;43:89–93.

    Article  Google Scholar 

  51. Nakayama M, Okizaki A, Ishitoya S, Aburano T. “Hot” vertebra on (18)F-FDG PET scan: a case of vertebral hemangioma. Clin Nucl Med. 2012;37:1190–3.

    Article  PubMed  Google Scholar 

  52. Douis H, Saifuddin A. The imaging of cartilaginous bone tumours. I. Benign lesions. Skelet Radiol. 2012;41:1195–212.

    Article  CAS  Google Scholar 

  53. Mukherjee A, Singla S, Das CJ, Bal C, Kumar R. Enchondroma of clivus: appearance on 18F-FDG PET-CT in contrast with MRI. Clin Nucl Med. 2015;40:e53–4.

    Article  PubMed  Google Scholar 

  54. Nose H, Otsuka H, Otomi Y, Terazawa K, Takao S, Iwamoto S, et al. Correlations between F-18 FDG PET/CT and pathological findings in soft tissue lesions. J Med Invest. 2013;60:184–90.

    Article  PubMed  Google Scholar 

  55. Miyake KK, Nakamoto Y, Kataoka TR, Ueshima C, Higashi T, Terashima T, et al. Clinical, morphologic, and pathologic features associated with increased FDG uptake in schwannoma. AJR Am J Roentgenol. 2016;207:1288–96.

    Article  PubMed  Google Scholar 

  56. Pilavaki M, Chourmouzi D, Kiziridou A, Skordalaki A, Zarampoukas T, Drevelengas A. Imaging of peripheral nerve sheath tumors with pathologic correlation: pictorial review. Eur J Radiol. 2004;52:229–39.

    Article  CAS  PubMed  Google Scholar 

  57. Agarwal KK, Seth R, Behra A, Jana M, Kumar R. 18F-Fluorodeoxyglucose PET/CT in Langerhans cell histiocytosis: spectrum of manifestations. Jpn J Radiol. 2016;34:267–76.

    Article  CAS  PubMed  Google Scholar 

  58. Obert J, Vercellino L, Van Der Gucht A, de Margerie-Mellon C, Bugnet E, Chevret S, et al. 18F-fluorodeoxyglucose positron emission tomography–computed tomography in the management of adult multisystem Langerhans cell histiocytosis. Eur J Nucl Med Mol Imaging. 2017;44:598–610.

    Article  PubMed  Google Scholar 

  59. Long Q, Shaoyan W, Hui W. 18F-fluorodeoxyglucose positron emission tomography/computed tomography for primary thyroid Langerhans histiocytosis: a case report and literature review. Indian J Nucl Med. 2015;30:328–30.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Koç ZP, Şimşek S, Akarsu S, Balcı TA, Onur MR, Kepenek F. Insufficiency of bone scintigraphy in vertebral lesions of Langerhans cell histiocytosis compared to F-18 fluorodeoxyglucose positron emission tomography/computed tomography and diagnostic computed tomography. Mol Imaging Radionucl Ther. 2015;24:21–4.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pavlik M, Bloom DA, Ozgönenel B, Sarnaik SA. Defining the role of magnetic resonance imaging in unifocal bone lesions of Langerhans cell histiocytosis. J Pediatr Hematol Oncol. 2005;27:432–5.

    Article  PubMed  Google Scholar 

  62. Adejolu M, Huo L, Rohren E, Santiago L, Yang WT. False-positive lesions mimicking breast cancer on FDG PET and PET/CT. AJR Am J Roentgenol. 2012;198:W304–14.

    Article  PubMed  Google Scholar 

  63. Kashyap R, Lau E, George A, Seymour JF, Lade S, Hicks RJ, et al. High FDG activity in focal fat necrosis: a pitfall in interpretation of posttreatment PET/CT in patients with non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2013;40:1330–6.

    Article  PubMed  Google Scholar 

  64. Im HJ, Kim TS, Park SY, Min HS, Kim JH, Kang HG, et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma. Eur J Nucl Med Mol Imaging. 2012;39:39–49.

    Article  CAS  PubMed  Google Scholar 

  65. Chen L, Wu X, Ma X, Guo L, Zhu C, Li Q. Prognostic value of 18F-FDG PET-CT-based functional parameters in patients with soft tissue sarcoma: a meta-analysis. Medicine (Baltimore). 2017;96:e5913.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li YJ, Dai YL, Cheng YS, Zhang WB, Tu CQ. Positron emission tomography (18)F-fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: a meta-analysis. Eur J Surg Oncol. 2016;42:1103–14.

    Article  PubMed  Google Scholar 

  67. Kaste S. Imaging pediatric bone sarcomas. Radiol Clin N Am. 2011;49:749–65.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wieder HA, Pomykala KL, Benz MR, Buck AK, Herrmann K. PET tracers in musculoskeletal disease beyond FDG. Semin Musculoskelet Radiol. 2014;18:123–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mana Ishibashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishibashi, M., Tanabe, Y., Fujii, S. et al. Pictorial review of 18F-FDG PET/CT findings in musculoskeletal lesions. Ann Nucl Med 31, 437–453 (2017). https://doi.org/10.1007/s12149-017-1182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-017-1182-3

Keywords

Navigation