Skip to main content

Advertisement

Log in

Microorganisms: crucial players of smokeless tobacco for several health attributes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Global consumption of smokeless tobacco (SLT) reached 300 million users worldwide majorly from middle-income countries. More than 4000 chemical compounds represent it as one of the noxious consumable products by humans. Besides toxicants/carcinogens, the heavy microbial load on smokeless tobacco further keeps human health at higher risk. Several of these inhabitant microbes participate in biofilm formation and secrete endotoxin/mycotoxins and proinflammatory-like molecules, leading to several oral diseases. Tobacco-associated bacteria exhibit their role in tobacco-specific nitrosamines (TSNAs) formation and acetaldehyde production; both are well-documented carcinogens. Moreover, tobacco exhibits the potential to alter the oral microbiome and induce dysbiotic conditions that lead to the onset of several oral and systemic diseases. Traditional cultivation approaches of microbiology provide partial information of microbial communities of a habitat; therefore, microbiomics has now been employed to study the metagenomes of entire microbial communities. In the past 5 years, few NGS-based investigations have revealed that SLT harbors four dominant phyla (Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes) dominating Bacillus spp. and/or Pseudomonas spp. However, functional characterization of their genetic elements will be a more informative attribute to understand the correlation between inhabitant microbial diversity and their relatedness concerning abundance and diseases. This review provides an update on the microbial diversity of SLT and its associated attributes in human health.

Key points

• Heavy microbial load on smokeless tobacco alarms for poor oral hygiene.

• Inhabitant microorganisms of SLT participate in TSNA and biofilm formation.

• SLTs alter the oral microbiome and causes oral dysbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abakar, Omer AAI, Yousif AMM (2020) The effect of Sudanese smokeless tobacco (toom bak) using on oral microbiota. bioRxiv 2020.04.03.023408.

  • Ahn SJ, Ahn SJ, Wen ZT, Brady LJ, Burne RA (2008) Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun 76:4259–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-hebshi N, Alharbi F, Mahri M, Chen T (2017) Differences in the bacteriome of smokeless tobacco products with different oral carcinogenicity: compositional and predicted functional analysis. Genes 8:106

    Article  PubMed Central  CAS  Google Scholar 

  • Anumudu CK, Nwachukwu MI, Obasi CC, Nwachukwu IO, Ihenetu FC (2019) Antimicrobial activities of extracts of tobacco leaf (Nicotiana tabacum) and its grounded snuff (Utaba) on Candida albicans and Streptococcus pyogenes. J Trop Dis 7:2

    Google Scholar 

  • Ashkanane A, Gomez GF, Levon J, Windsor LJ, Eckert GJ, Gregory RL (2017) Nicotine upregulates coaggregation of candida albicans and Streptococcus mutans. J Prosthodontics

  • Bagaitkar J, Daep CA, Patel CK, Renaud DE, Demuth DR, Scott DA (2011) Tobacco smoke augments Porphyromonas gingivalis-Streptococcus gordonii biofilm formation. PLoS ONE 6:e27386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balhaddad AA, Melo M, Gregory RL (2019) Inhibition of nicotine induced Streptococcus mutans biofilm formation by salts solutions intended for mouthrinses. Restor Dent Endod 44:e4

    Article  PubMed  PubMed Central  Google Scholar 

  • Banozic M, Jokic J, Ackar U, Blazic M, Subaric D (2020) Carbohydrates—key players in tobacco aroma formation and quality determination. Molecules 25:1734

    Article  PubMed Central  CAS  Google Scholar 

  • Bush LP, Cui M, Shi H, Burton HR, Fannin FF, Lei L, Dye N (2001) Formation of tobacco-specific nitrosamines in air-cured tobacco. Rec Adv Tob Sci 27:23–46

    Google Scholar 

  • Chattopadhyay S, Malayil L, Mongodin EF, Sapkota AR (2021) A roadmap from unknowns to knowns: advancing our understanding of the microbiomes of commercially available tobacco products. Appl Microbiol Biotechnol 105:2633–2645

    Article  CAS  PubMed  Google Scholar 

  • Corringer PJ, BaadenM BN, Delarue M, Dufresne V, Nury H (2010) Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J Physiol 588:565–572

    Article  CAS  PubMed  Google Scholar 

  • Dedrick RL, Conlon PJ (1995) Prolonged expression of lipopolysaccharide (LPS)-induced inflammatory genes in whole blood requires continual exposure to LPS. Infect Immun 63:1362–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giacomo M, Paolino M, Silvestro D, Vigliotta G, Imperi F, Visca P (2007) Microbial community structure and dynamics of dark fire-cured tobacco fermentation. Appl Environ Microbiol 73:825–837

    Article  PubMed  CAS  Google Scholar 

  • DuBois AE, Bennett ZC, Khalid U, Khalid A, Meece RA, Difiore GJ, Gregory RL (2014) Nicotine: its stimulating and inhibitory effects on oral microorganisms. Fine Foc 1:63–75

    Article  Google Scholar 

  • El-Ezmerli NF, Gregory RL (2019) Effect of nicotine on biofilm formation of Streptococcus mutans isolates from smoking and non-smoking subjects. J Oral Microbiol 11:1662275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkler WA Jr, Zimmerman ML, Martin SA, Hall ER (1987) The effect of smokeless-tobacco extracts on the growth of oral bacteria of the genus Streptococcus. Arch Oral Biol 32:221–223

    Article  PubMed  Google Scholar 

  • Geiss O, Kotzias D (2007) Tobacco, cigarettes and cigarette smoke an overview. In Institute for Health and Consumer Protection. Joint Research Center/Institute for Health and Consumer Protection (IHCP): Isra, Italy, pp 1–72

  • Goldstein-Daruech N, Cope EK, Zhao K-Q, Vukovic K, Kofonow JM et al (2011) Tobacco smoke mediated induction of sinonasal microbial biofilms. PLoS ONE 6:e15700

  • Gregoire S, Xiao J, Silva BB, Gonzalez I, Agidi PS, Klein MI, Ambatipudi KS, Rosalen PL, Bauserman R, Waugh RE, Koo H (2011) Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ microbiol 77:6357–6367

  • Halboub E, Al-Ak'hali MS, Alamir AH, Homeida HE, Baraniya D, Chen T, Al-Hebshi NN (2020) Tongue microbiome of smokeless tobacco users. BMC Microbiol 8:201

    Article  CAS  Google Scholar 

  • Han J, Sanad YM, Deck J, Sutherland JB, Li Z, Walters MJ, Duran N, Holman MR, Foley SL (2016) Bacterial populations associated with smokeless tobacco products. Appl Enviro Microbiol 82:6273–6283

    Article  CAS  Google Scholar 

  • Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W (1999) Bacterial endotoxin is an active component of cigarette smoke. Chest 115:829–835

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Yang J, Duan Y, Gu W, Gong X, Zhe W, Su C, Zhang KQ (2010) Bacterial diversities on unaged and aging flue-cured tobacco leaves estimated by 16S rRNA sequence analysis. Appl Microbiol Biotechnol 88:553–562

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Li M, Gregory RL (2012) Effect of nicotine on growth and metabolism of Streptococcus mutans. Eur J Oral Sci. 120:319–325

    CAS  PubMed  Google Scholar 

  • Huang R, Li M, Ye M, Yang K, Xu X, Gregory RL (2014) Effects of nicotine on Streptococcus gordonii growth, biofilm formation, and cell aggregation. Appl Environ Microbiol 80:7212–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutcherson Justin A, Scott David A, Juhi B (2015) Scratching the surface -tobacco-induced bacterial biofilms. Tob Induc Dis 13

  • Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK (2014) Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One 9:e88645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jenkinson HF, Lamont RJ (2005) Oral microbial communities in sickness and in health. Trends Microbiol 13:589–595

  • Johnson J (1934) Studies on the fermentation of tobacco. J Agric Res 49:137-160

    CAS  Google Scholar 

  • Kavvadias D, Scherer G, Cheung F, Errington G, Shepperd J, McEwan M (2009) Determination of tobacco-specific N-nitrosamines in urine of smokers and non-smokers. Biomarkers 8:547–553

    Article  CAS  Google Scholar 

  • Kulkarni R, Antala S, Wang A, Amaral FE, Rampersaud R, Larussa SJ (2012) Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress. Infect Immun 80:3804–3811

  • Larsson L, Szponar B, Ridha B, Pehrson C, Dutkiewicz J, Krysinska-Traczyk E, Sitkowska J (2008) Identification of bacterial and fungal components in tobacco and tobacco smoke. Tob Induce Dis 4:4

    Article  CAS  Google Scholar 

  • Law AD, Fisher C, Jack A, Moe LA (2016) Tobacco, microbes, and carcinogens: Correlation between tobacco cure conditions, tobacco-specific nitrosamine content, and cured leaf microbial community. Microb Ecol 72:120–129

    Article  CAS  PubMed  Google Scholar 

  • Lee SF, Progulske-Fox A, Erdos GW, Piacentini DA, Ayakawa GY, Crowley PJ, Bleiweis AS (1989) Construction and characterization of isogenic mutants of Streptococcus mutans deficient in major surface protein antigen P1 (I/II). Infect Immun 57:3306–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MY, Huang RJ, Zhou XD (2013) Role of sortase in Streptococcus mutans under the effect of nicotine. Int J Oral Sci 5:206–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Huang R, Zhou X, Zhang K, Zheng X, Gregory RL (2014) Effect of nicotine on dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis. FEMS Microbiol Lett 350:125–132

    Article  CAS  PubMed  Google Scholar 

  • Li M, Huang R, Zhou X, Qiu W, Xu X, Gregory RL (2016) Effect of nicotine on cariogenic virulence of Streptococcus mutans. Folia Microbiol (Praha) 61:505–512

    Article  CAS  Google Scholar 

  • Li J, Zhao Y, Qin Y, Shi H (2020) Influence of microbiota and metabolites on the quality of tobacco during fermentation. BMC Microbiol 20:356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin RD, Hsueh PR, Chang JC, Teng LJ, Chang SC, Ho SW, Hsieh WC, Luh KT (1997) Flavimonas oryzihabitans bacteremia: clinical features and microbiological characteristics of isolates. Clin Infect Dis 24:867–873

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Jin J, Pan H, Feng J, Cerniglia CE, Yang M, Chen H (2016) Effect of smokeless tobacco products on human oral bacteria growth and viability. Anaerobe 42:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Qiu W, Zhang K, Zhou X, Ren B, He J, Xu X, Cheng L, Li M (2017) Nicotine enhances interspecies relationship between Streptococcus mutans and Candida albicans. Biomed Res Int 2017:7953920

    PubMed  PubMed Central  Google Scholar 

  • Lyon (2007) World Health Organization International Agency for Research on cancer. IARC monographs on the evaluation of carcinogenic risks to humans.

    Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: Purification and structural analysis. J Bacteriol 178:175–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Nagata H, Yamamoto Y, Tanaka M, Tanaka J, Minamino N, Shizukuishi S (2004) Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis functions as a co-adhesin for Porphyromonas gingivalis major fimbriae. Infect Immun 72:1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzer HS, Nobbs AH, Doran KS (2020) The multifaceted nature of Streptococcal Antigen I/II proteins in colonization and disease pathogenesis. Front microbiol 11:602305

    Article  PubMed  PubMed Central  Google Scholar 

  • Mason MR, Preshaw PM, Nagaraja HN, Dabdoub SM, Rahman A, Kumar PS (2015) The subgingival microbiome of clinically healthy current and never smokers. ISME J 9:268–272

    Article  PubMed  Google Scholar 

  • Matsumura M, Izumi T, Matsumoto M (2003) The role of glucan binding proteins in the cariogenicity of Streptococcus mutans. Microbiol Immunol 47:213–215

    Article  CAS  PubMed  Google Scholar 

  • Miluna S, Rostoka D, Skadioo I, Reinis A, Priedite V, Koka R, Lauva D, Krojea J (2017) The oral microbiome of smokeless tobacco users in Latvia. Proceed Latvian Acad Sci 71:33–37

    Google Scholar 

  • Nagarajappa S, Prasad KV (2010) Oral microbiota, dental caries and periodontal status in smokeless tobacco chewers in Karnataka, India: a case-control study. Oral Health Prev Dent. 8:211–219

    PubMed  Google Scholar 

  • Nasrin S, Chen G, Watson CJW, Lazarus P (2020) Comparison of tobacco-specific nitrosamine levels in smokeless tobacco products: high levels in products from Bangladesh. PLoS One 15:e0233111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noailles A, Maneu V, Campello L (2018) Systemic inflammation induced by lipopolysaccharide aggravates inherited retinal dystrophy. Cell Death Dis 9:350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pallen MJ, Lam AC, Antonio M (2001) An embarrassment of sortases-a richness of substrates? Trends Microbiol 9:97–102

    Article  CAS  PubMed  Google Scholar 

  • Pauly OL, Paszkiewicz (2011) Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation. J Oncol 2011:819129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rivera AJ, Tyx RE, Keong LM (2020) Microbial communities and gene contributions in smokeless tobacco products. Appl Microbiol Biotechnol 104:10613–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgman A, Perfetti TA (2009) The chemical components of tobacco and tobacco smoke, vol 2009. CRC Press, Boca Raton, FL, USA, pp 1–1784

    Google Scholar 

  • Rubinstein I, Pedersen GW (2002) Bacillus species are present in chewing tobacco sold in the United States and evoke plasma exudation from the oral mucosa. Clin Diagn Lab Immunol 9:1057–1060

    PubMed  PubMed Central  Google Scholar 

  • Saleem S, Naz SA, Shafique M, Jabeen N, Ahsan SW (2018) Fungal contamination in smokeless tobacco products traditionally consumed in Pakistan. J Pak Med Assoc 68:1471–1477

    PubMed  Google Scholar 

  • Samuel O, Michael O (2016) Microbial contamination of locally-prepared snuff sold at Eke-Awka Market, Anmbra State, Nigeria. Am J Life Sci Res 4:74–77

    Google Scholar 

  • Sinha DN, Gupta PC, Kumar A, Bhartiya D, Agarwal N, Sharma S, Singh H, Parascandola M, Mehrotra R (2018) The poorest of poor suffer the greatest burden from smokeless tobacco use: a study from 140 countries. Nicotine Tob Res 20:1529–1532

    Article  PubMed  Google Scholar 

  • Smyth EM, Kulkarni P, Claye E, Stanfill S, Tyx R, Maddox C, Mongodin EF, Sapkota AR (2017) Smokeless tobacco products harbor diverse bacterial microbiota that differs across products and brands. Appl Microbiol Biotechnol 101:5391–5403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastav M, Dineshkumar T, Priyadharini S, Niveditha T, Sk P, Rajkumar K (2020) Smokeless tobacco products (STPs) harbour bacterial populations with potential for oral carcinogenicity. Asian Pacific Journal of Cancer Prevention APJCP 21:815–824

    Article  Google Scholar 

  • Srivastava A, Mishra S, Verma D (2021) Characterization of oral bacterial composition of adult smokeless tobacco users from healthy Indians using 16S rDNA analysis. Microb Ecol. https://doi.org/10.1007/s00248-021-01711-0

  • Su C, Gu W, Zhe W, Zhang KQ, Duan Y, Yang J (2011) Diversity and phylogeny of bacteria on Zimbabwe tobacco leaves estimated by 16S rRNA sequence analysis. Appl Microbiol Biotechnol 92:1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi T (1954) Microbial degradation of nicotine and nicotinic acid. I. Isolation of nicotine-decomposing bacteria and these morphological and physiological properties. J Agr Chem Soc Japan 28:807–810

    Google Scholar 

  • Takeuchi H, Sasaki N, Yamaga S, Kuboniwa M, Matsusaki M, Amano A (2019) Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule. PLoS pathogens 15:e1008124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamayo AI, Cancho FG (1953) Microbiology of the fermentation of Spanish tobacco. Int Congr Microbiol 6:48–50

    Google Scholar 

  • Tomar SL, Hecht SS, Jaspers I, Gregory RL, Stepanov I (2019) Oral health effects of combusted and smokeless tobacco products. Adv Dent Res 1:4–10

    Article  Google Scholar 

  • Ton-That H, Liu G, Mazmanian SK (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci USA 96:12424–12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyx RE, Stanfill SB, Keong LM, Rivera AJ, Satten GA, Watson CH (2016) Characterization of bacterial communities in selected smokeless tobacco products using 16S rDNA analysis. PLoS One 11:e0146939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyx RE, Rivera AJ, Keong LM, Stanfill SB (2020) An exploration of smokeless tobacco product nucleic acids: a combined metagenome and metatranscriptome analysis. Appl Microbiol Biotechnol 104:751–763

    Article  CAS  PubMed  Google Scholar 

  • Vallès Y, Inman CK, Peters BA (2018) Types of tobacco consumption and the oral microbiome in the United Arab Emirates Healthy Future (UAEHFS) Pilot Study. Sci Rep 8:11327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vellappally S, Fiala Z, Smejkalova J, Jacob V, Shriharsha P (2007) Influence of tobacco use in dental caries development. Central European J Pub Health 15:116–121

    Article  Google Scholar 

  • Verma D, Garg PK, Dubey AK (2018) Insights into the human oral microbiome. Arch Microbiol 200:525–540

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma A, Verma D (2020) Exploring the microbiome of smokeless tobacco. In: Chaudhary R, Verma A (eds) Microorganisms for sustainable environment and health. Elsevier, Amsterdam, pp 167–178

    Chapter  Google Scholar 

  • Wagenknecht DR, BalHaddad AA, Gregory RL (2018) Effects of nicotine on oral microorganisms, human tissues, and the interactions between them. Curr Oral Health Rep 5:78–87

    Article  Google Scholar 

  • Wang M, Yang G, Wang X, Yao Y, Min H, Lu Z (2011) Nicotine degradation by two novel bacterial isolates of Acinetobacter sp. TW and Sphingomonas sp. TY and their responses in the presence of neonicotinoid insecticides. World J Microbiol Biotechnol 27:1633–1640

    Article  CAS  Google Scholar 

  • Wei X, Deng X, Cai D, Ji Z, Wang C, Yu J, Li J, Chen S (2014) Decreased tobacco-specific nitrosamines by microbial treatment with Bacillus amyloliquefaciens DA9 during the air-curing process of burley tobacco. J Agric Food Chem 62:12701–12706

    Article  CAS  PubMed  Google Scholar 

  • WHO Factsheet India (2018) Received from regional office of South East Asia

  • Wu Y, Ma Y, Xu T, Zhang QZ, Bai J, Wang J, Zhu T, Lou Q, Gotz F, Qu D, Zheng CQ, Zhao KQ (2018) Nicotine enhances Staphylococcus epidermidis biofilm formation by altering the bacterial autolysis, extracellular DNA releasing, and polysaccharide intercellular adhesin production. Front Microbiol 9:2575

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu T, Wu Y, Lin Z, Bertram R, Gotz F, Zhang Y (2017) Identification of genes controlled by the essential YycFG two-component system reveals a role for biofilm modulation in Staphylococcus epidermidis. Front Microbiol 8:724

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Suzuki S, Makino A (2013) Starch degradation by alpha-amylase in tobacco leaves during the curing process. Soil Sci Plant Nutr 59:904–911

    Article  CAS  Google Scholar 

  • Yang Z, Zhang J, Song S, Zhang L, Jia Y, Liu L, Chen X, Liu Y, Zhou W (2018) Effects of two different fermentation methods on the chemical composition and sensory quality of sun-cured tobacco leaves. J Anhui Agric Sci 46:8–11

    Google Scholar 

  • Zhao M, Wang B, Li F, Qiu L, Li F, Wang S, Cui J (2007) Analysis of bacterial communities on aging flue-cured tobacco leaves by 16S rDNA PCR–DGGE technology. Appl Microbiol Biotechnol 73:1435–1440

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Cong L, Lukiw WJ (2017) Lipopolysaccharide (LPS) accumulates in neocortical neurons of Alzheimer’s disease (AD) brain and impairs transcription in human neuronal-glial primary co-cultures. Front Aging Neurosci 9:407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhiping W, Malmberg P, Larsson BM, Larsson K, Larsson L, Saraf A (1996) Exposure to bacteria in swinehouse dust and acute inflammatory reactions in humans. Am J Respir Crit Care Med 154:1261–1266

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Lou Q, Wu Y, Hu J, Yu F, Qu D (2010) Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile. BMC Microbiol 10:287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Availability of data and material

Not applicable

Code availability

Not applicable.

Funding

The investigation is financially supported by SERB, New Delhi (File No. SB/YS/LS-102/2014), and UGC-BSR (F 30.442/2018/BSR).

Author information

Authors and Affiliations

Authors

Contributions

DV conceived the idea. AV and DV collected and compiled the information. AV and DV wrote the manuscript. DV edited the manuscript. DV and AV approved the final version of the manuscript.

Corresponding author

Correspondence to Digvijay Verma.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

On acceptance of the manuscript, the copyright from the author will be transferred to the journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, A., Verma, D. Microorganisms: crucial players of smokeless tobacco for several health attributes. Appl Microbiol Biotechnol 105, 6123–6132 (2021). https://doi.org/10.1007/s00253-021-11460-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11460-2

Keywords

Navigation