Skip to main content

Advertisement

Log in

Marine microbial L-glutaminase: from pharmaceutical to food industry

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Deamination of L-glutamine to glutamic acid with the concomitant release of ammonia by the activity of L-glutaminase (L-glutamine amidohydrolase EC 3.5.1.2) is a unique reaction that also finds potential applications in different sectors ranging from therapeutics to food industry. Owing to its cost-effectiveness, rapidity, and compatibility with downstream processes, microbial production of L-glutaminase is preferred over the production by other sources. Marine microorganisms including bacteria, yeasts, and moulds have manifested remarkable capacity to produce L-glutaminase and, therefore, are considered as prospective candidates for large-scale production of this enzyme. The main focus of this article is to provide an overview of L-glutaminase producing marine microorganisms, to discuss strategies used for the lab- and large-scale production of these enzyme and to review the application of L-glutaminase from marine sources so that the future prospects can be understood.

Key points

L-glutaminase has potential applications in different sectors ranging from therapeutics to food industry

Marine microorganisms are considered as prospective candidates for large-scale production of L-glutaminase

Marine microbial L-glutaminase have great potential in therapeutics and in the food industry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed A, Taha TM, Abo-Dahab NF, Hassan FS (2016) Process optimization of L-glutaminase production; a tumour inhibitor from marine endophytic isolate Aspergillus sp. ALAA-2000. J Microb Biochem Technol 8:256–267

    Google Scholar 

  • Alam MN, Bristi NJ, Rafiquzzaman M (2013) Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 21(2):143–152

    Article  PubMed  Google Scholar 

  • Aly MM, Kadi RH, Aldahlawi AM, Alkhatib MH, Wali AN (2017) Production of the antitumor L-glutaminase enzyme from thermotolerant Streptomyces sp. D214, under submerged fermentation conditions. J Exp Biol Agric Sci 5(6):878–885

    Article  CAS  Google Scholar 

  • Amobonye A, Singh S, Pillai S (2019) Recent advances in microbial glutaminase production and applications—a concise review. Crit Rev Biotechnol 39(7):944–963

    Article  CAS  PubMed  Google Scholar 

  • Anastasiou D, Cantley LC (2012) Breathless cancer cells get fat on glutamine. Cell Res 22(3):443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnosti C, Bell C, Moorhead D, Sinsabaugh R, Steen A, Stromberger M, Wallenstein M, Weintraub M (2014) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117(1):5–21

    Article  CAS  Google Scholar 

  • Balagurunathan R, Radhakrishnan M, Somasundaram S (2010) L-glutaminase producing actinomycetes from marine sediments–selective isolation, semi quantitative assay and characterization of potential strain. Aust J Basic Appl Sci 4(5):698–705

    CAS  Google Scholar 

  • Barzkar N (2020) Marine microbial alkaline protease: an efficient and essential tool for various industrial applications. Int J Biol Macromol 161:1216–1229

    Article  CAS  PubMed  Google Scholar 

  • Barzkar N, Sohail M (2020) An overview on marine cellulolytic enzymes and their potential applications. Appl Microbiol Biotechnol 104(16):6873–6892

    Article  CAS  PubMed  Google Scholar 

  • Barzkar N, Attaran Fariman G, Taheri A (2017) Proximate composition and mineral contents in the body wall of two species of sea cucumber from Oman Sea. Environ Sci Pollut Res 24(23):18907–18911. https://doi.org/10.1007/s11356-017-9379-5

    Article  CAS  Google Scholar 

  • Barzkar N, Homaei A, Hemmati R, Patel S (2018) Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 22(3):335–346

    Article  CAS  PubMed  Google Scholar 

  • Barzkar N, Jahromi ST, Poorsaheli HB, Vianello F (2019) Metabolites from marine microorganisms, micro, and macroalgae: immense scope for pharmacology. Mar Drugs 17(8):464

    Article  CAS  PubMed Central  Google Scholar 

  • Barzkar N, Khan Z, Jahromi ST, Poormozaffar S, Gozari M, Nahavandi R (2020) A critical review on marine serine protease and its inhibitors: a new wave of drugs? Int J Biol Macromol 170:674–687

    Article  PubMed  Google Scholar 

  • Barzkar N, Sohail M, Jahromi ST, Gozari M, Poormozaffar S, Nahavandi R, Hafezieh M (2021) Marine bacterial esterases: emerging biocatalysts for industrial applications. Appl Biochem Biotechnol 193:1–28. https://doi.org/10.1007/s12010-020-03483-8

    Article  CAS  Google Scholar 

  • Becker J, Wittmann C (2018) From systems biology to metabolically engineered cells—an omics perspective on the development of industrial microbes. Curr Opin Microbiol 45:180–188

    Article  CAS  PubMed  Google Scholar 

  • Behrouzpour E, Amini K (2019) Molecular isolation, cloning and expressions of L–glutaminase encoded gene from the aquatic Streptomyces collected from Persian Gulf. Int J Mol Clin Microbiol 9(2):1181–1187

    Google Scholar 

  • Berlemont R, Gerday C (2011) 1.18 - Extremophiles. In: Moo-Young M (ed) Comprehensive Biotechnology (Second Edition), vol 1, Second. Academic Press, Burlington, pp 229–242

    Google Scholar 

  • Binod P, Sindhu R, Madhavan A, Abraham A, Mathew AK, Beevi US, Sukumaran RK, Singh SP, Pandey A (2017) Recent developments in l-glutaminase production and applications–an overview. Bioresour Technol 245:1766–1774

    Article  CAS  PubMed  Google Scholar 

  • Bülbül D, Karakuş E (2013) Production and optimization of L-glutaminase enzyme from Hypocrea jecorina pure culture. Prep Biochem Biotechnol 43(4):385–397

    Article  PubMed  Google Scholar 

  • Chandrasekaran M (1994) Economic utilization of marine microorganisms employing solid state fermentation. In: Pandey A (ed) Solid State Fermentation. Wiley Eastern Limited, New Delhi, pp 168–172

    Google Scholar 

  • Chasanah E, Tambunan USF, Yulianti T (2013) Screening and characterization of L-glutaminase produced by bacteria isolated from Sangihe Talaud Sea. Squalen Bull Mar Fish Postharvest Biotech 7(3):115–122

    Article  Google Scholar 

  • Criss WE (1971) A review of isozymes in cancer. Cancer Res 31(11):1523–1542

    CAS  PubMed  Google Scholar 

  • Das S, Lyla P, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90(10):1325–1335

    CAS  Google Scholar 

  • Dhevagi P (2016) Isolation of L-glutaminase producing marine actinomycetes. Int J Mol Clin Microbiol 6(1):635–642

    Google Scholar 

  • Durai S, Selvaraj B, Manikkam R, Ramasamy B (2014) Production and optimization of L-glutaminase from Vibrio sp. M9 isolated from mahabalipuram marine sediments. World J Pharm Res 3:2117–2126

    Google Scholar 

  • Durthi CP, Pola M, Rajulapati SB, Kola AK (2020) Insights into potent therapeutical antileukemic agent L-glutaminase enzyme under solid-state fermentation: a review. Curr Drug Metab 21(3):211–220

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Roy R, Lahiri D (2015) L-asparaginase and L-glutaminase from Pseudomonas aeruginosa: production and some physicochemical properties. J Microbiol Biotechnol Food Sci 5(1):34–39

    Article  CAS  Google Scholar 

  • Estrada-Badillo C, Marquez-Rocha FJ (2003) Effect of agitation rate on biomass and protease production by a marine bacterium Vibrio harveyi cultured in a fermentor. World J Microbiol Biotechnol 19(2):129–133

    Article  CAS  Google Scholar 

  • Gozari M, Zaheri A, Jahromi ST, Gozari M, Karimzadeh R (2019) Screening and characterization of marine actinomycetes from the northern Oman Sea sediments for cytotoxic and antimicrobial activity. Int Microbiol 22(4):521–530

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol Mol Biol Plants 23(2):249–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Saquero A, Calderon J, Arreguın R, Calderon-Flores A, Duran S (2001) Overexpression and purification of Rhizobium etli glutaminase A by recombinant and conventional procedures: a comparative study of enzymatic properties. Protein Expr Purif 21(3):432–437

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Hanya Y, Koyama Y (2013) Purification and characterization of a glutaminase enzyme accounting for the majority of glutaminase activity in Aspergillus sojae under solid-state culture. Appl Microbiol Biotechnol 97(19):8581–8590

    Article  CAS  PubMed  Google Scholar 

  • Iyer PV, Singhal RS (2009) Screening and selection of marine isolate for L-glutaminase production and media optimization using response surface methodology. Appl Biochem Biotechnol 159(1):233–250

    Article  CAS  PubMed  Google Scholar 

  • Izadpanah Qeshmi F, Javadpour S, Malekzadeh K, Tamadoni Jahromi S, Rahimzadeh M (2014) Persian gulf is a bioresource of potent L-asparaginase producing bacteria: isolation & molecular differentiating. Int J Environ Res 8(3):813–818

    Google Scholar 

  • Jahromi ST, Barzkar N (2018a) Future direction in marine bacterial agarases for industrial applications. Appl Microbiol Biotechnol 102(16):6847–6863

    Article  CAS  PubMed  Google Scholar 

  • Jahromi ST, Barzkar N (2018b) Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol 120:2147–2154

    Article  Google Scholar 

  • Jayabalan R, Jeeva S, Sasikumar A, Inbakandan D, Swaminathan K, Yun S (2010) Extracellular L-glutaminase production by marine Brevundimonas diminuta MTCC 8486. Int J Appl Bioeng 4(2):19–24

    Google Scholar 

  • Karahan M, Karakuş E, Bülbül D, Atacı N (2014) Immobilization of glutaminase enzyme from Hypocria jecorina on polyacrylic acid: preparation and biochemical characterization. Artif Cells Nanomed Biotechnol 42(4):262–267

    Article  CAS  PubMed  Google Scholar 

  • Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8(1):1–15

    Article  Google Scholar 

  • Kashyap P, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochem 38(3):307–312

    Article  CAS  Google Scholar 

  • Katikala PK, Bobbarala V, Tadimalla P, Guntuku GS (2009) Screening of L-glutaminase producing marine bacterial cultures for extracellular production of L-glutaminase. Int J ChemTech Res 1(4):1232–1235

    CAS  Google Scholar 

  • Keerthi T, Suresh P, Sabu A, Rajeevkumar S, Chandrasekaran M (1999) Extracellular production of L-glutaminase by alkalophilic Beauveria bassiana BTMF S10 isolated from marine sediment. World J Microbiol Biotechnol 15(6):751–752

    Article  CAS  Google Scholar 

  • Kijima K, Suzuki H (2007) Improving the umami taste of soy sauce by the addition of bacterial γ-glutamyltranspeptidase as a glutaminase to the fermentation mixture. Enzym Microb Technol 41(1-2):80–84

    Article  CAS  Google Scholar 

  • Kiruthika J, Murugesan S (2020) Studies on optimization of L-glutaminase production under submerged fermentation from marine Bacillus subtilis JK-79. Afr J Microbiol Res 14(1):16–24

    Article  CAS  Google Scholar 

  • Kiruthika J, Saraswathy N (2013) Production of L-glutaminase and its optimization from a novel marine isolate Vibrio azureus JK-79. Afr J Biotechnol 12(50):6944–6953

    Google Scholar 

  • Kiruthika J, Saraswathy N (2014) Isolation and characterization of a novel L-glutaminase producing marine Bacillus subtilis JK-79. Asian J Microbiol Biotechnol Environ Sci 16(3):601–610

    Google Scholar 

  • Kiruthika J, Swathi S (2019) Purification and characterisation of a novel broad spectrum anti-tumor L-glutaminase enzyme from marine Bacillus subtilis strain JK-79. Afr J Microbiol Res 13(12):232–244

    Article  CAS  Google Scholar 

  • Knox WE, Tremblay GC, Spanier BB, Friedell GH (1967) Glutaminase activities in normal and neoplastic tissues of the rat. Cancer Res 27(8 Part 1):1456–1458

    CAS  PubMed  Google Scholar 

  • Kodama M, Oshikawa K, Shimizu H, Yoshioka S, Takahashi M, Izumi Y, Bamba T, Tateishi C, Tomonaga T, Matsumoto M (2020) A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat Commun 11(1):1–16

    Article  Google Scholar 

  • Koibuchi K, Nagasaki H, Yuasa A, Kataoka J, Kitamoto K (2000) Molecular cloning and characterization of a gene encoding glutaminase from Aspergillus oryzae. Appl Microbiol Biotechnol 54(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Krishnakumar S, Rajan RA, Ravikumar S (2011) Extracellular production of L-glutaminase by marine alkalophilic Streptomyces sp.-SBU1 isolated from Cape Comorin coast. Indian J Geomarine Sci 40(5):717–721

    CAS  Google Scholar 

  • Kumar SR, Chandrasekaran M (2003) Continuous production of L-glutaminase by an immobilized marine Pseudomonas sp BTMS-51 in a packed bed reactor. Process Biochem 38(10):1431–1436

    Article  CAS  Google Scholar 

  • Lonsane B (1994) Resurgence of interest in solid state fermentation reasons and justifications. In: Pandey A (ed) Solid state fermentation. Wiley Eastern Ltd, New Delhi, pp 11–20

  • Mahmod M (2016) Immobilization of Bacillus subtilis glutaminase on different supportis. J Nutr Health Food Eng 5(4):00179

    Google Scholar 

  • Mao Y, Xi L, LiYun Z (2013) Production of a novel salt-tolerant L-glutaminase from Bacillus amyloliquefaciens using agro-industrial residues and its application in Chinese soy sauce fermentation. Biotechnology 12(1):25–35

    Google Scholar 

  • Masuo N, Ito K, Yoshimune K, Hoshino M, Matsushima K, Koyama Y, Moriguchi M (2004) Molecular cloning, overexpression, and purification of Micrococcus luteus K-3-type glutaminase from Aspergillus oryzae RIB40. Protein Expr Purif 38(2):272–278

    Article  CAS  PubMed  Google Scholar 

  • Mayer A, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N (2020) Marine pharmacology in 2014–2015: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 18(1):5

    Article  CAS  Google Scholar 

  • Mostafa YS, Alamri SA, Alfaifi MY, Alrumman SA, Elbehairi SEI, Taha TH, Hashem M (2021) L- glutaminase synthesis by marine Halomonas meridiana isolated from the red sea and its efficiency against colorectal cancer cell lines. Molecules 26(7):1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moure A, Cruz JM, Franco D, Domínguez JM, Sineiro J, Domínguez H, Núñez Ma J, Parajó JC (2001) Natural antioxidants from residual sources. Food Chem 72(2):145–171

    Article  CAS  Google Scholar 

  • Mousumi D, Dayanand A (2013) Production and antioxidant attribute of L-glutaminase from Streptomyces enissocaesilis DMQ-24. Int J Latest Res Sci Technol 2(3):1–9

    Google Scholar 

  • Nahar K, Hasanuzzaman M, Suzuki T, Fujita M (2017) Polyamines-induced aluminum tolerance in mung bean: a study on antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology 26(1):58–73

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar R, Wakayama M, Nagano Y, Kawamura T, Sakai K, Moriguchi M (1999) Overexpression of salt-tolerant glutaminase from Micrococcus luteus K-3 in Escherichia coli and its purification. Protein Expr Purif 15(2):155–161

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar R, Yoshimune K, Wakayama M, Moriguchi M (2003) Microbial glutaminase: biochemistry, molecular approaches and applications in the food industry. J Mol Catal B Enzym 23(2-6):87–100

    Article  CAS  Google Scholar 

  • Nathiya K, Nath SS, Angayarkanni J, Palaniswamy M (2011) Optimised production of L-glutaminase: a tumour inhibitor from Aspergillus flavus cultured on agroindustrial residues. Afr J Biotechnol 10(63):13887–13894

    Article  CAS  Google Scholar 

  • Nguyen T, Nguyen V (2017) Characterization and applications of marine microbial enzymes in biotechnology and probiotics for animal health. Adv Food Nutr Res 80. Elsevier:37–74

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop T, Claassens NJ, van der Oost J (2019) Improved protein production and codon optimization analyses in Escherichia coli by bicistronic design. Microb Biotechnol 12(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Olszowy M, Dawidowicz AL (2018) Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chem Pap 72(2):393–400

    Article  CAS  Google Scholar 

  • Orabi H, El-Fakharany E, Abdelkhalek E, Sidkey N (2020) Production, optimization, purification, characterization, and anti-cancer application of extracellular L-glutaminase produced from the marine bacterial isolate. Prep Biochem Biotechnol 50(4):408–418

    Article  CAS  PubMed  Google Scholar 

  • O'toole DK (1997) The role of microorganisms in soy sauce production. Adv Appl Microbiol 45:87–152

    Article  CAS  Google Scholar 

  • Pallem C, Manipati S, Somalanka S, Pradesh A (2010) Process optimization of L-glutaminase production by Trichoderma koningii under solid state fermentation (SSF). Int J Appl Biol Pharm Technol 1:1168–1174

    Google Scholar 

  • Pandey A (1992) Recent process developments in solid-state fermentation. Process Biochem 27(2):109–117

    Article  CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77(1):149–162

    CAS  Google Scholar 

  • Pandian SRK, Deepak V, Sivasubramaniam SD, Nellaiah H, Sundar K (2014) Optimization and purification of anticancer enzyme L-glutaminase from Alcaligenes faecalis KLU102. Biologia 69(12):1644–1651

    Article  CAS  Google Scholar 

  • Prabhu NG, Chandrasekaran M (1996) L-glutaminase production by marine Vibrio costicola under solid-state fermentation using different substrates. J Mar Biotechnol 4(3):176–179

    CAS  Google Scholar 

  • Prabhu GN, Chandrasekaran M (1997) Impact of process parameters on L-glutaminase production by marine Vibrio costicola in solid state fermentation using polystyrene as an inert support. Process Biochem 32(4):285–289

    Article  Google Scholar 

  • Prabhu GN, Chandrasekaran M (1999) Purification and characterization of an anti-cancer enzyme produced by marine Vibrio Costicola under a novel solid state fermentation process. Braz Arch Biol Technol 42(3):363–368

    Article  CAS  Google Scholar 

  • Prakash P, Poorani E, Anantharaman P, Balasubramaniam T (2009) L-glutaminase production and the growth of marine bacteria. Res J Microbiol 4:168–172

    Article  CAS  Google Scholar 

  • Raimbault M, Alazard D (1980) Culture method to study fungal growth in solid fermentation. Eur J Appl Microbiol 9(3):199–209

    Article  CAS  Google Scholar 

  • Ramli ANM, Johari ND, Azhar MA, Man RC, Hamid HA (2021) A new l-glutaminase from Kosakonia sp.: extracellular production, gene identification and structural analysis. Journal of Food Measurement and Characterization 15(1):862-875.https://doi.org/10.1007/s11694-020-00682-z

  • Renu S, Chandrasekaran M (1992) Extracellular L-glutaminase production by marine bacteria. Biotechnol Lett 14(6):471–474

    Article  CAS  Google Scholar 

  • Roberts J, McGregor WG (1991) Inhibition of mouse retroviral disease by bioactive glutaminase-asparaginase. J Gen Virol 72(2):299–305

    Article  CAS  PubMed  Google Scholar 

  • Roy SD, Lahiri D (2020) L-asparaginase and L-glutaminase from Pseudomonas aeruginosa PAO1: production and some physicochemical properties. J Microbiol Biotechnol Food Sci 9(4):142–146

    Google Scholar 

  • Sabu A, Keerthi T, Kumar SR, Chandrasekaran M (2000) L-glutaminase production by marine Beauveria sp. under solid state fermentation. Process Biochem 35(7):705–710

    Article  CAS  Google Scholar 

  • Sabu A, Kumar SR, Chandrasekaran M (2002) Continuous production of extracellular L-glutaminase by Ca-alginate-immobilized marine Beauveria bassiana BTMF S-10 in packed-bed reactor. Appl Biochem Biotechnol 102(1-6):71–79

    Article  PubMed  Google Scholar 

  • Sajitha N, Vasuki S, Suja M, Kokilam G, Gopinath M (2013) Screening of L-glutaminase from seaweed endophytic fungi. Int J Appl Biol Pharm 3(5):206–209

    Google Scholar 

  • Sarkar A, Abhyankar I, Saha P, Kumar S, Rao B (2014) Antioxidant, haemolytic activity of L-glutaminase producing marine actinobacteria isolated from salt pan soil of coastal Andhra Pradesh. Res J Pharm Technol 7(5):544–549

    Google Scholar 

  • Sarkar A, Philip AM, Thakker DP, Wagh MS, Rao KB (2020) In vitro antioxidant activity of extracellular L-glutaminase enzyme isolated from marine yeast Rhodotorula sp. DAMB1. Res J Pharm Technol 13(1):209–215

    Article  Google Scholar 

  • Sathish T, Uppuluri K, Chari PVB, Kezia D (2016) Sequential optimization methods for augmentation of marine enzyme production in solid-state fermentation: L-glutaminase production a case study. Adv Food Nutr Res 78. Elsevier:95–114

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Banik R (2013) Biochemical characterization and antitumor study of L-glutaminase from Bacillus cereus MTCC 1305. Appl Biochem Biotechnol 171(2):522–531

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar K, Sahu MK, Manivel P, Kannan L (2006) Optimum conditions for L-glutaminase production by actinomycete strain isolated from estuarine fish, Chanos chanos (Forskal, 1775). Indian J Exp Biol 44(3):256–258

    CAS  PubMed  Google Scholar 

  • Soren JP, Halder SK, Mondal J, Hor PK, Mohapatra PK, Mondal KC (2020) A permissive approach for optimization of L-glutaminase production using wheat bran as supporting substrate and assessment of its cytotoxic potentialities. Acta Biol Szeged 64(1):1–10

    Article  Google Scholar 

  • Souba WW (1993) Glutamine and cancer. Ann Surg 218(6):715–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava N (2019) Production of food-processing enzymes from recombinant microorganisms Enzymes in Food Biotechnology. Elsevier, Amsterdam, pp 739–767

    Google Scholar 

  • Tiwari AK (2001) Imbalance in antioxidant defence and human diseases: Multiple approach of natural antioxidants therapy. Curr Sci 18(9):1179–1187

    Google Scholar 

  • Tork SE, Aly MM, Elsemin O (2018) A new l-glutaminase from Streptomyces pratensis NRC 10: Gene identification, enzyme purification, and characterization. Int J Biol Macromol 113:550–557

    Article  CAS  PubMed  Google Scholar 

  • Unissa R, Sudhakar M, Reddy ASK, Sravanthi KN (2014) A review on biochemical and therapeutic aspects of glutaminase. Int J Pharm Sci Res 5(11):4617–4634

    Google Scholar 

  • Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F (2014) The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18(5):811–824

    Article  CAS  PubMed  Google Scholar 

  • Wakayama M, Nagano Y, Renu N, Kawamura T, Sakai K, Moriguchi M (1996) Molecular cloning and determination of the nucleotide sequence of a gene encoding salt-tolerant glutaminase from Micrococcus luteus K-3. J Ferment Bioeng 82(6):592–597

    Article  CAS  Google Scholar 

  • Wakayama M, Yamagata T, Kamemura A, Bootim N, Yano S, Tachiki T, Yoshimune K, Moriguchi M (2005) Characterization of salt-tolerant glutaminase from Stenotrophomonas maltophilia NYW-81 and its application in Japanese soy sauce fermentation. J Ind Microbiol Biotechnol 32(9):383–390

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Teramatsu T (1982) Application of immobilized enzymes for biomaterials used in the field of thoracic surgery. In: Chibata I. FS, Wingard L.B (ed) Enzyme Engineering. Springer, Boston, MA, pp 459-460

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S (1974) Production of glutaminase by Aspergillus sojae. J Ferment Technol 32(8):564–569

    Google Scholar 

  • Yano T, Ito M, Tomita K, Kumagai H (1988) Purification and properties of glutaminase from Aspergillus oryzae. J Ferment Technol 66(2):137–143

    Article  CAS  Google Scholar 

  • Yılmaz D, Karakuş E (2011) Construction of a potentiometric glutamate biosensor for determination of glutamate in some real samples. Artif Cells Blood Substit Biotechnol 39(6):385–391

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NB conceptualization, writing – original draft preparation

MS, STJ, RN, and MKH: manuscript editing

Corresponding author

Correspondence to Noora Barzkar.

Ethics declarations

Ethical approval

The authors are aware of the ethical responsibilities required by the journal and are committed to comply with them.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzkar, N., Sohail, M., Tamadoni Jahromi, S. et al. Marine microbial L-glutaminase: from pharmaceutical to food industry. Appl Microbiol Biotechnol 105, 4453–4466 (2021). https://doi.org/10.1007/s00253-021-11356-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11356-1

Keywords

Navigation