Skip to main content
Log in

Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trichothecenes are sesquiterpene toxins produced by diverse but relatively few fungal species in at least three classes of Ascomycetes: Dothideomycetes, Eurotiomycetes, and Sordariomycetes. Approximately 200 structurally distinct trichothecene analogs have been described, but a given fungal species typically produces only a small subset of analogs. All trichothecenes share a core structure consisting of a four-ring nucleus known as 12,13-epoxytrichothec-9-ene. This structure can be substituted at various positions with hydroxyl, acyl, or keto groups to give rise to the diversity of trichothecene structures that has been described. Over the last 30 years, the genetic and biochemical pathways required for trichothecene biosynthesis in several species of the fungi Fusarium and Trichoderma have been elucidated. In addition, phylogenetic and functional analyses of trichothecene biosynthetic (TRI) genes from fungi in multiple genera have provided insights into how acquisition, loss, and changes in functions of TRI genes have given rise to the diversity of trichothecene structures. These analyses also suggest both divergence and convergence of TRI gene function during the evolutionary history of trichothecene biosynthesis. What has driven trichothecene structural diversification remains an unanswered question. However, insight into the role of trichothecenes in plant pathogenesis of Fusarium species and into plant glucosyltransferases that detoxify the toxins by glycosylating them point to a possible driver. Because the glucosyltransferases can have substrate specificity, changes in trichothecene structures produced by a fungus could allow it to evade detoxification by the plant enzymes. Thus, it is possible that advantages conferred by evading detoxification have contributed to trichothecene structural diversification.

Key Points

• TRI genes have evolved by diverse processes: loss, acquisition and changes in function.

• Some TRI genes have acquired the same function by convergent evolution.

• Some other TRI genes have evolved divergently to have different functions.

• Some TRI genes were acquired or resulted from diversification in function of other genes.

• Substrate specificity of plant glucosyltransferases could drive trichothecene diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander NJ, McCormick SP, Ziegenhorn SL (1999) Phytotoxicity of selected trichothecenes using Chlamydomonas reinhardtii as a model system. Nat Toxins 7:265–269

    Article  CAS  PubMed  Google Scholar 

  • Alexander NJ, Proctor RH, McCormick SP (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215

    Article  CAS  Google Scholar 

  • Alexander NJ, McCormick SP, Waalwijk C, van der Lee T, Proctor RH (2011) The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 48:485–495

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36:224–233

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Proctor RH, Dyer RB, Plattner RD (2003) Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem 51:7936–7944

    Article  CAS  PubMed  Google Scholar 

  • Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD (2004) Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol 41:454–462

    Article  CAS  PubMed  Google Scholar 

  • Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutiérrez S (2011) Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol 77:4867–4877. https://doi.org/10.1128/AEM.00595-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoza RE, McCormick SP, Malmierca MG, Olivera ER, Alexander NJ, Monte E, Gutiérrez S (2015) Effects of trichothecene production on the plant defense response and fungal physiology: overexpression of the Trichoderma arundinaceum tri4 gene in T. harzianum. Appl Environ Microbiol 81:6355–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoza RE, McCormick SP, Lindo L, Kim H-S, Olivera ER, Nelson DR, Proctor RH, Gutiérrez S (2019) A cytochrome P450 monooxygenase gene required for biosynthesis of the trichothecene toxin harzianum A in Trichoderma. Appl Microbiol Biotechnol 103:8087–8103. https://doi.org/10.1007/s00253-019-10047-2

    Article  CAS  PubMed  Google Scholar 

  • Carrasco L, Barbacid M, Vazquez D (1973) The trichodermin group of antibiotics, inhibitors of peptide bond formation by eukaryotic ribosomes. Biochim Biophys Acta 312:368–376

    Article  CAS  PubMed  Google Scholar 

  • Cole R, Jarvis BB, Schweikert MA (2003) Handbook of secondary fungal metabolites volume III. Academic Press, San Diego

    Google Scholar 

  • Cundliffe E, Davies JE (1977) Inhibition of initiation, elongation, and termination of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob Agents Chemother 11:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cundliffe E, Cannon M, Davies J (1974) Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob Agents Chemother 11:491–499

    Article  Google Scholar 

  • Desjardins AE, Proctor RH, Bai G, McCormick SP, Shaner G, Beuchley G, Hohn TM (1996) Reduced virulence of trichothecene-non-producing mutants of Gibberella zeae in wheat field tests. Mol Plant-Microbe Interact 9:1996–1023

    Article  Google Scholar 

  • Desjardins AE, McCormick SP, Appell M (2007) Structure-activity relationships of trichothecene toxins in an Arabidopsis thaliana leaf assay. J Agric Food Chem 55:6487–6492. https://doi.org/10.1021/jf0709193

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Poole A, Peacock J, Dennis ES (1999) Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119:507–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  PubMed  Google Scholar 

  • Hohn TM, Beremand P (1989) Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79:131–138

    Article  CAS  PubMed  Google Scholar 

  • Jarvis BB (1991) Macrocyclic trichothecenes. In: Sharma RP, Salunkhe DK (eds) Mycotoxins and Phytoalexins. CRC Press, Inc., Boca Raton, pp 361–421

    Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism- from biochemistry to genomics. Nat Rev Microbiol 3:937–947. https://doi.org/10.1038/nrmicro1286

    Article  CAS  PubMed  Google Scholar 

  • Kelly A, Proctor RH, Belzile F, Chulze SN, Clear RM, Cowger G, Elmer W, Lee T, Obanor F, Waalwijk C, Ward T (2016) The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum. Fungal Genet Biol 95:39–48. https://doi.org/10.1016/j.fgb.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  • Khatibi PA, Newmister SA, Rayment I, McCormick SP, Alexander NJ, Schmale DG (2011) Bioprospecting for trichothecene 3-O-acetyltransferases in the fungal genus Fusarium yields functional enzymes with different abilities to modify the mycotoxin deoxynivalenol. Appl Environ Microbiol 77:1162–1170

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi H, Miyagawa Y, Sahashi Y, Inatomi S, Haganuma A, Nakahata N, Oshima Y (2004) Novel spirocyclic trichothecanes, spirotenuipesine A and B, isolated from entomopathogenic fungus, Paecilomyces tenuipes. J Organomet Chem 69:352–356

    Article  CAS  Google Scholar 

  • Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I (1998a) Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. J Biol Chem 273:1654–1661

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Matsumoto G, Shingu Y, Yoneyama K, Yamaguchi I (1998b) The mystery of the trichothecene 3-O-acetyltransferase gene analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides. FEBS Lett 435:163–168

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Tokai T, Matsumoto G, Fujimura M, Hamamoto H, Yoneyama K, Shibata T, Yamaguchi I (2003) Trichothecene nonproducer Gibberella species have both functional and nonfunctional 3-O-actyltransferase genes. Genetics 163:677–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123

    Article  CAS  PubMed  Google Scholar 

  • Lee T, Han YK, Kim KH, Yun SH, Lee YW (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XZ, Zhu C, de Lange CF, Zhou T, He J, Yu H, Gong J, Young JC (2011) Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance. Food Addit Contam Part A 28:894–901

    Article  CAS  Google Scholar 

  • Li X, Michlmayr H, Scheweiger W, Malachova A, Shin S, Huang Y, Dong Y, Wiesenberger G, McCormick S, Lemmens M, Fruhmann P, Hametner C, Berthiller F, Adam G, Muehlbauer GJ (2017) A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium head blight resistance in transgenic wheat. J Exp Bot 68:2187–2197. https://doi.org/10.1093/jxb/erx109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindo L, McCormick SP, Cardoza RE, Brown DW, Kim H-S, Alexander NJ, Proctor RH, Gutiérrez S (2018) Effect of deletion of a trichothecene toxin regulatory gene on the secondary metabolism transcriptome of the saprotrophic fungus Trichoderma arundinaceum. Fungal Genet Biol 119:29–46. https://doi.org/10.1016/j.fgb.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  • Lindo L, McCormick SP, Cardoza RE, Busman M, Alexander NJ, Proctor RH, Gutiérrez S (2019a) Requirement of two acyltransferases for 4-O-acylation during biosynthesis of harzianum A, an antifungal trichothecene produced by Trichoderma arundinaceum. J Agric Food Chem 67:723–734. https://doi.org/10.1021/acs.jafc.8b05564

    Article  CAS  PubMed  Google Scholar 

  • Lindo L, McCormick SP, Cardoza RE, Kim H-S, Brown DW, Alexander NJ, Proctor RH, Gutiérrez S (2019b) Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genet Biol 122:31–46

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33

    Article  CAS  PubMed  Google Scholar 

  • Marcet-Houben M, Gabaldon T (2019) Evolutionary and functional patterns of shared gene neighbourhood in fungi. Nat Microbiol 4:2383–2392. https://doi.org/10.1038/s41564-019-0552-0

    Article  CAS  PubMed  Google Scholar 

  • McCormick SP, Alexander NJ (2002) Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl Environ Microbiol 68:2959–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick SP, Alexander NJ (2007) Myrothecium roridum Tri4 encodes a multifunctional oxygenase required for three oxygenation steps. Can J Microbiol 53:572–579

    Article  CAS  PubMed  Google Scholar 

  • McCormick SP, Hohn TM, Desjardins AE (1996) Isolation and characterization of Tri3, a gene encoding 15-O-acetyltransferase from Fusarium sporotrichioides. Appl Environ Microbiol 62:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE (2004) Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70:2044–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick SP, Alexander NJ, Proctor RH (2006) Fusarium Tri4 encodes a multifunctional oxygenase required for trichothecene biosynthesis. Can J Microbiol 52:636–642

  • McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–814. https://doi.org/10.3390/toxins3070802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin JE, Bin-Umer MA, Tortora A, Mendeze N, McCormick S, Tumer NE (2009) A genome-wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 106:21883–21888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean M (1996) The phytotoxicity of Fusarium metabolites: an update since 1989. Mycopathologia 133:163–179

    Article  CAS  PubMed  Google Scholar 

  • Meek IB, Peplow AW, Ake C Jr, Phillips TD, Beremand MN (2003) Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol 69:1607–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michlmayr H, Varga E, Malachová A, Fruhmann P, Piatkowska M, Hametner C, Sofrová J, Jaunecker G, Häubl G, Lemmens M, Berthiller F, Adam G (2018) UDP-Glucosyltransferases from rice, Brachypodium, and barley: substrate specificities and synthesis of type A and B trichothecene-3-O-β-D-glucosides. Toxins 10:111. https://doi.org/10.3390/toxins10030111

    Article  CAS  PubMed Central  Google Scholar 

  • Middlebrook JL, Leatherman DL (1989) Specific associations of T-2 toxin with mammalian cells. Biochem Pharmacol 38:3093–3102

    Article  CAS  PubMed  Google Scholar 

  • Mondol MA, Surovy MZ, Islam MT, Schuffler A, Laatsch H (2015) Macrocyclic trichothecenes from Myrothecium roridum strain M10 with motility inhibitory and zoosporicidal activities against Phytophthora nicotianae. J Agric Food Chem 63:8777–8786. https://doi.org/10.1021/acs.jafc.5b02366

    Article  CAS  PubMed  Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace JG, Watts MR, Canterbury WJ (1988) T-2 mycotoxin inhibits mitochondrial protein synthesis. Toxicon 26:77–85

    Article  CAS  PubMed  Google Scholar 

  • Peplow AW, Meek IB, Wiles MC, Phillips TD, Beremand MN (2003) Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl Environ Microbiol 69:5935–5940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestka JJ (2008) Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam 22:1128–1140

    Article  CAS  Google Scholar 

  • Pitt JI, Lange L, Lacey AE, Vuong D, Midgley DJ, Greenfield P, Bradbury MI, Lacey E, Busk PK, Pilgaard B, Chooi H, Piggott AM (2017) Aspergillus hancockii sp. nov., a biosynthetically talented fungus endemic to southeastern Australian soils. PLoS One 12(4):e0170254. https://doi.org/10.1371/journal.pone.0170254

  • Proctor RH, Hohn TM, McCormick SP (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant-Microbe Interact 61:1923–1930

    CAS  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP (1997) Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation. Microbiology 143:2583–2591

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, McCormick SP, Alexander NJ, Desjardins AE (2009) Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 74:1128–1142. https://doi.org/10.1111/j.1365-2958.2009.06927.x

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, McCormick SP, Kim H-S, Cardoza RE, Stanley AM, Lindo L, Kelly A, Brown DW, Lee T, Vaughan MM, Alexander NJ, Busman M, Gutiérrez S (2018) Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog 14:e1006946. https://doi.org/10.1371/journal.ppat.1006946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley RT, Norred WP (1996) Mechanisms of mycotoxicity. In: Howard DH, Miller JD (eds) The Mycota VI: human and animal relationships. Springer-Verlag, New York, pp 193–211

    Chapter  Google Scholar 

  • Ro DK, Arimura GI, Lau SYW, Piers E, Bohlmann J (2005) Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP702B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc Natl Acad Sci U S A 102:8060–8065. https://doi.org/10.1073/pnas.0500825102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosso M, Maier M, Bertoni M (2000) Macrocyclic trichothecene production by the fungus epibiont of Baccharis coridifolia. Molecules 5:345–347

    Article  CAS  Google Scholar 

  • Salichos L, Stamatakis A, Rokas A (2014) Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Mol Biol Evol 31(5):1261–1271. https://doi.org/10.1093/molbev/msu061

    Article  CAS  PubMed  Google Scholar 

  • Semeiks J, Borek D, Otwinowski Z, Grishin NV (2014) Comparative genome sequencing reveals chemotype-specific gene clusters in the toxigenic black mold Stachybotrys. BMC Genomics 15:590. https://doi.org/10.1186/1471-2164-15-590

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straus DC (2009) Molds, mycotoxins, and sick building syndrome. Toxicol Ind Health 25:617–635. https://doi.org/10.1177/0748233709348287

    Article  CAS  PubMed  Google Scholar 

  • Sundstøl Eriksen G, Pettersson H, Lundh T (2004) Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem Toxicol 42:619–624

    Article  PubMed  CAS  Google Scholar 

  • Suneja SK, Wagle DS, Ram GC (1989) Effect of oral administration of T-2 toxin on glutathione shuttle enzymes, microsomal reductases and lipid peroxidation in rat liver. Toxicon 27:995–1001

    Article  CAS  PubMed  Google Scholar 

  • Surup F, Medjedović A, Szczygielski M, Schroers H-J, Stadler M (2014) Production of trichothecenes by the apple sooty blotch fungus Microcyclospora tardicrescens. J Agric Food Chem 62:3525–3530

  • Tamm C, Breitenstein W (1980) The biosynthesis of trichothecene Mycotoxins. In: Steyn P (ed) The biosynthesis of mycotoxins: a study in secondary metabolism. Academic Press, New York, pp 69–104

    Chapter  Google Scholar 

  • Tijerino A, Cardoza RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado IG, Gutiérrez S, Monte E, Hermosa R (2011) Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol 48:285–296. https://doi.org/10.1016/j.fgb.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  • Tokai T, Fujimura M, Inoue H, Aoki T, Ohta K, Shibata T, Yamaguchi I, Kimura M (2005) Concordant evolution of trichothecene 3-O-acetyltransferase and an rDNA species phylogeny of trichothecene-producing and non-producing fusaria and other ascomycetous fungi. Microbiology 151(2):509–519

  • Tokai T, Takahashi-Ando N, Izawa M, Kamakura T, Yoshida M, Fujimura M, Kimura M (2008) 4-O-acetylation and 3-oacetylation of trichothecenes by trichothecene 15-O-acetyltransferase encoded by Fusarium Tri3. Biosci Biotechnol Biochem 72:2485–2489. https://doi.org/10.1271/bbb.80501

    Article  CAS  PubMed  Google Scholar 

  • Trapp SC, Hohn TM, McCormick SP, Jarvis BB (1998) Characterization of the macrocyclic trichothecene gene cluster in Myrothecium roridum. Mol Gen Genet 257:421–432

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B (2005) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol 66:597–611. https://doi.org/10.1007/s00253-004-1805-1

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y (1977) Mode of action of trichothecenes. Ann Nutr Aliment 31:885–900

    CAS  PubMed  Google Scholar 

  • Ueno Y (1984) Toxicological features of T-2 toxin and related trichothecenes. Fundam Appl Toxicol 4:S124–S132

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y (1985) The toxicology of mycotoxins. Crit Rev Toxicol 14:99–132

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Matsumoto H (1975) Inactivation of some thiol-enzymes by trichothecene mycotoxins from Fusarium species. Chem Pharm Bull 23:2439–2442

    Article  CAS  Google Scholar 

  • Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong Y, Schöfbeck D, McCormick SP, Broz K, Stückler R, Schuhmacher R, Krska R, Kistler HC, Berthiller F, Adam G (2015) New tricks of an old enemy: isolates of Fusarium graminearum produce a type a trichothecene mycotoxin. Environ Microbiol 17:2588–2600. https://doi.org/10.1111/1462-2920.12718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatasubbaiah P, Sutton TB, Chilton WS (1995) The structure and biological properties of secondary metabolites produced by Peltaster fructicola, a fungus associated with apple sooty blotch disease. Plant Dis 79:1157–1160

    Article  CAS  Google Scholar 

  • Villani A, Proctor RH, Kim H-S, Brown DW, Logrieco AF, Amatulli MT, Moretti A, Susca A (2019) Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics 20:314. https://doi.org/10.1186/s12864-019-5567-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Wannemacher RW, Winer SL (1977) Trichothecene mycotoxins. In: Sidell RR, Takafuji ET, Franz DR (eds) Medical Aspects of Chemical and Biological Warfare. Office of the Surgeon General at TMM Publications, Washington, DC, USA, pp 655–676

    Google Scholar 

  • Wetterhorn KM, Gabardi K, Michlmayr H, Malachova A, Busman M, McCormick SP, Berthiller F, Adam G, Rayment I (2017) Determinants and expansion of specificity in a Trichothecene UDP-Glucosyltransferase from Oryza sativa. Biochemistry 56:6585–6596. https://doi.org/10.1021/acs.biochem.7b01007

    Article  CAS  PubMed  Google Scholar 

  • Ye W, Liu T, Zhu M, Zhang W, Li H, Huang Z, Li S (2017) De novo transcriptome analysis of plant pathogenic fungus Myrothecium roridum and identification of genes associated with trichothecene mycotoxin biosynthesis. Int J Mol Sci 18:497

    Article  PubMed Central  CAS  Google Scholar 

Download references

Availability of data and material

Not applicable.

Funding

This work was supported by the Spanish Ministry of Science, Innovation and Universities (MCINN-RTI2018-099600-B-I00 to SG) and the Food Safety National Program of the Agriculture Research Service, US Department of Agriculture (SPM and RHP).

Author information

Authors and Affiliations

Authors

Contributions

RHP, SPM, and SG conceived the study and wrote the article. RHP and SG formatted the article to its final version. All authors read and approved the manuscript.

Corresponding authors

Correspondence to R. H. Proctor or S. Gutiérrez.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Authors declare their consent to participate in this article.

Consent for publication

Authors declare their consent to publish this article.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

†Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proctor, R.H., McCormick, S.P. & Gutiérrez, S. Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi. Appl Microbiol Biotechnol 104, 5185–5199 (2020). https://doi.org/10.1007/s00253-020-10612-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10612-0

Keywords

Navigation