Skip to main content

Advertisement

Log in

Metabolic engineering of Parageobacillus thermoglucosidasius for the efficient production of (2R, 3R)-butanediol

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

High-temperature fermentation using thermophilic microorganisms may provide cost-effective processes for the industrial production of fuels and chemicals, due to decreased hygiene and cooling costs. In the present study, the genetically trackable thermophile Parageobacillus thermoglucosidasius DSM2542T was engineered to produce (2R, 3R)-butanediol (R-BDO), a valuable chemical with broad industrial applications. The R-BDO biosynthetic pathway was optimized by testing different combinations of pathway enzymes, with acetolactate synthase (AlsS) from Bacillus subtilis and acetolactate decarboxylase (AlsD) from Streptococcus thermophilus yielding the highest production in P. thermoglucosidasius DSM2542T. Following fermentation condition optimization, shake flask fermentation at 55 °C resulted in the production of 7.2 g/L R-BDO with ~ 72% theoretical yield. This study details the microbial production of R-BDO at the highest fermentation temperature reported to date and demonstrates that P. thermoglucosidasius DSM2542T is a promising cell factory for the production of fuels and chemicals using high-temperature fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64(6):2240–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137

    Article  CAS  PubMed  Google Scholar 

  • Bartosiak-Jentys J, Hussein AH, Lewis CJ, Leak DJ (2013) Modular system for assessment of glycosyl hydrolase secretion in Geobacillus thermoglucosidasius. Microbiology 159(Pt 7):1267–1275. https://doi.org/10.1099/mic.0.066332-0

    Article  CAS  PubMed  Google Scholar 

  • Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27(6):715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li S, Liu L (2014) Engineering redox balance through cofactor systems. Trends Biotechnol 32(6):337–343

    Article  CAS  PubMed  Google Scholar 

  • Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11(6):398–408. https://doi.org/10.1016/j.ymben.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29(3):351–364. https://doi.org/10.1016/j.biotechadv.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Liu LG, Shen MQ, Nie ZK, Tong YJ, Huang H (2015) Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol. Biotechnol Bioeng 112(5):1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Peng X, Liu Y, Han Y (2017) Conversion of cellulose and hemicellulose of biomass simultaneously to acetoin by thermophilic simultaneous saccharification and fermentation. Biotechnol Biofuels 10(1):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Kananavičiūtė R, Čitavičius D (2015) Genetic engineering of Geobacillus spp. J Microbiol Methods 111:31–39. https://doi.org/10.1016/j.mimet.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Hahn JS (2015) Efficient production of 2, 3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng 31:94–101

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Seo SO, Jin YS, Seo JH (2013) Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresour Technol 146:274–281. https://doi.org/10.1016/j.biortech.2013.07.081

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Cho S, Lee SM, Woo HM, Lee J, Um Y, Seo JH (2016) High production of 2, 3-butanediol (2, 3-BD) by Raoultella ornithinolytica B6 via optimizing fermentation conditions and overexpressing 2, 3-BD synthesis genes. PLoS One 11(10):e0165076

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebre PH, Aliyu H, De Maayer P, Cowan DA (2018) In silico characterization of the global Geobacillus and Parageobacillus secretome. Microb Cell Factories 17(1):156. https://doi.org/10.1186/s12934-018-1005-9

    Article  CAS  Google Scholar 

  • Li L, Chen C, Li K, Wang Y, Gao C, Ma C, Xu P (2014a) Efficient simultaneous saccharification and fermentation of inulin to 2, 3-butanediol by thermophilic Bacillus licheniformis ATCC 14580. Appl Environ Microbiol 80(20):6458–6464

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Li K, Wang K, Chen C, Gao C, Ma C, Xu P (2014b) Efficient production of 2, 3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol 170:256–261

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Chao R, Zhao H (2014) Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol. Metab Eng 23:92–99

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Mishra S, Zhao H (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metab Eng 50:85–108. https://doi.org/10.1016/j.ymben.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  • Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH, Liao JC (2014) Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 24:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  PubMed  Google Scholar 

  • Radeck J, Kraft K, Bartels J, Cikovic T, Durr F, Emenegger J, Kelterborn S, Sauer C, Fritz G, Gebhard S, Mascher T (2013) The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J Biol Eng 7(1):29. https://doi.org/10.1186/1754-1611-7-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smerilli M, Neureiter M, Wurz S, Haas C, Frühauf S, Fuchs W (2015) Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J Chem Technol Biotechnol 90(4):648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MP, Esteban CD, Leak DJ (2008) Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid 60(1):45–52. https://doi.org/10.1016/j.plasmid.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chen T, Zhao X, Chamu J (2012) Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2, 3-butanediol production. Biotechnol Bioeng 109(7):1610–1621

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Wang X, Huang Y, Huo F, Zhu X, Xi L, Lu JR (2012) Thermophilic fermentation of acetoin and 2, 3-butanediol by a novel Geobacillus strain. Biotechnol Biofuels 5(1):88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie NZ, Chen XR, Wang QY, Chen D, Du QS, Huang RB (2017) Microbial routes to (2R, 3R)-2, 3-butanediol: recent advances and future prospects. Curr Top Med Chem 17(21):2433–2439

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Lee CC, Liao JC (2009) Enantioselective synthesis of pure (R, R)-2, 3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7(19):3914–3917

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Mohagheghi A, Franden MA, Chou YC, Chen X, Dowe N, Himmel ME, Zhang M (2016) Metabolic engineering of Zymomonas mobilis for 2, 3-butanediol production from lignocellulosic biomass sugars. Biotechnol Biofuels 9(1):189

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YHP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A 102(20):7321–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Ma X, Li L, Zhang W, Ping S, Xu MQ, Lin M (2010) Protein cyclization enhanced thermostability and exopeptidase-resistance of green fluorescent protein. J Microbiol Biotechnol 20(3):460–466

    CAS  PubMed  Google Scholar 

  • Zhou J, Wu K, Rao CV (2016) Evolutionary engineering of Geobacillus thermoglucosidasius for improved ethanol production. Biotechnol Bioeng 113(10):2156–2167. https://doi.org/10.1002/bit.25983

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Energy Biosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher V. Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1024 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Lian, J. & Rao, C.V. Metabolic engineering of Parageobacillus thermoglucosidasius for the efficient production of (2R, 3R)-butanediol. Appl Microbiol Biotechnol 104, 4303–4311 (2020). https://doi.org/10.1007/s00253-020-10553-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10553-8

Keywords

Navigation