Skip to main content

Advertisement

Log in

Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 27 April 2020

This article has been updated

Abstract

Exploring a cheap and clean renewable energy has become a common destination round the world with the depletion of oil resources and the concerns of increasing energy demands. Lignocellulosic biomass is the most abundant renewable resource in the biosphere, and the total biomass formed by plant photosynthesis reached more than 200 billion tons every year. Cellulase and hemicellulose and lignin degradation enzymes, the efficient biocatalyst, could efficiently convert the lignocellulosic biomass into sugars that could be further processed into biofuels, biochemical, and biomaterial for human requirement. The utilization and conversion of cellulosic biomass has great significance to solve the problems such as environmental pollution and energy crisis. Lignocellulosic materials are widely considered as important sources to produce sugar streams that can be fermented into ethanol and other organic chemicals. Pretreatment is a necessary step to overcome its intrinsic recalcitrant nature prior to the production of important biomaterial that has been investigated for nearly 200 years. Emerging research has focused in order of economical, eco-friendly, and time-effective solutions, for large-scale operational approach. These new mentioned technologies are promising for lignocellulosic biomass degradation in a huge scale biorefinery. This review article has briefly explained the emerging technologies especially the consolidated bioprocessing, chemistry, and physical base pretreatment and their importance in the valorization of lignocellulosic biomass conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

Change history

  • 27 April 2020

    This corrects the article "Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products��� in volume 104, with page no 455���473, (https://doi.org/10.1007/s00253-019-10158-w).

References

  • Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, an anerobic bacterium that produces ethanol from carbon monoxide. Archiv Microbiol 161:345–351

    CAS  Google Scholar 

  • Ahmed A, Lewis RL (2007) Fermentation of biomass generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97(5):1080–1086

    PubMed  CAS  Google Scholar 

  • Akcapinar GB, Gul O, Sezerman U (2011) Effect of codon optimization on the expression of Trichoderma reesei endoglucanase 1 in Pichia pastoris. Biotechnol Prog 27(5):1257–1263

    PubMed  CAS  Google Scholar 

  • Ali N, Ting Z, Minnan L (2015) Heterogeneous expression and functional characterization of cellulose-degrading enzymes from Aspergillus niger for enzymatic hydrolysis of alkali pretreated bamboo biomass. Mol Biotechnol 57:859–867

    PubMed  CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    PubMed  CAS  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    PubMed  CAS  Google Scholar 

  • Bai Y, Guo R, Yu H, Jiao L, Ding S, Jia Y (2011) Cloning of endo-β-glucanase I gene and expression in Pichia pastoris. Front Agricult China 5(2):196–200

    Google Scholar 

  • Bajpai P, (2016) Pretreatment of lignocellulosic biomass for biofuel production. Springer Nature

  • Balat MK (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers Management 52(2):858–875

    CAS  Google Scholar 

  • Balat MK, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282

    CAS  Google Scholar 

  • Bawa Z, Darby RAJ (2009) Optimising Pichia pastoris induction. In: Recombinant Protein Production in Yeast: Methods and Protocols, Methods Mol Biol 866

  • Beguin P, Aubert JP (2004) The biological degradation of cellulose. FEMS Microbiology Reviews 13(1):25–58

    Google Scholar 

  • Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E (2006) Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Bioch 41:423–429

    CAS  Google Scholar 

  • Cereghino JL, Cregg JM (2008) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Reviews 24:45–46

    Google Scholar 

  • Cervero JM, Skovgaard PA, Felby C, Sorensen HR, Jorgensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microbial Technol 46:177–184

    CAS  Google Scholar 

  • Chandel A, da Silva S (2013) Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization. InTech, Rijeka

    Google Scholar 

  • Chen H (2011) Cellulosic biomass technology. Chemical Industry Press, Beijing

    Google Scholar 

  • Cregg JM, Vedvick TS, Raschke WC (2013) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnol 8:905–910

    Google Scholar 

  • Daniel SL, Hsu T, Dean SI, Drake HL (2009) Characterization of the hydrogen and carbon monoxide-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172(4464):4471

    Google Scholar 

  • Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86:587–594

    PubMed  CAS  Google Scholar 

  • Daza-Serna LV, Orrego Alzate CE, Alzate CAC (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120

    PubMed  CAS  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306

    PubMed  CAS  Google Scholar 

  • Devendra P, Maurya Ankit S, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. Biotechnol 6:597–609

    Google Scholar 

  • Ding SY, Xu Q, Ali MK (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotech 41(4):435–443

    CAS  Google Scholar 

  • Drake HL, Kusel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer, NewYork, pp 354–420

    Google Scholar 

  • Drake HL, Gossner AS, Daniel SL (2008) Old acetogens, new light. Ann. N. Y Acad Sci 1125:100–128

    PubMed  CAS  Google Scholar 

  • Duque A, Manzanares P, Ballesteros M (2017) Extrusion as a pretreatment for lignocellulosic biomass: fundamentals and applications. Renew Energy 114B:1427–1441

    Google Scholar 

  • Duzhong J, Shui-fang Z, Wensheng H (2002) Pichia expression of foreign genes into the System. Biotechnol Bull 4:7–11

    Google Scholar 

  • Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1:380–395

    Google Scholar 

  • Ferreira S, Duarte AP, Ribeiro MHL, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Eng J 45:192–200

    CAS  Google Scholar 

  • Florenzano G, Poulain M (2004) A study of acetate production from cellulose using Clostridium thermocellum. Biomass 4:295–303

    Google Scholar 

  • Fockedey E, Wilde JD, Gerin PA (2008) Separation of chemicals produced by acidogenic fermentation. The 2008 Annual Meeting Philadelphia, PA

  • Fritz SE, Hood KR, Hood EE (1991) Hydroxyproline-rich glycoproteins in cell walls of pericarp from maize. Plant Sci 1991(79):13–22

    Google Scholar 

  • Generoso WC, Malago-Jr W, Pereira NJ, Henrique-Silva F (2012) Recombinant expression and characterization of an endoglucanase III (cel12a) from Trichoderma harzianum (Hypocreaceae) in the yeast Pichia pastoris. Gen Mol Res 11(2):1544–1557

    CAS  Google Scholar 

  • Genthner BRS, Bryant MP (1987) Additional characteristics of one-carboncompound utilization by Eubacterium limosum and Acetobacterium woodii. Appl Env Microbiol 53:471–476

    Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanology. Curr Opin Chem Biol 10(2):141–146

    PubMed  CAS  Google Scholar 

  • Grethlein HE (2004) Pretreatment for enhanced hydrolysis of cellulosic biomass. Biotechnol Adv 2(1):43–62

    Google Scholar 

  • Gyalai-Korpos M, Mangel R, Alvira P, Dienes D, Ballesteros M, Reczey K (2011) Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes. J Ind Microbiol Biotechnol 38(7):791–802

    PubMed  CAS  Google Scholar 

  • Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    PubMed  Google Scholar 

  • Hasler P, Nussbaumer T (1999) Gas cleaning for IC engine applications from fixed bed biomass gasification. Biom Bioener 16:385–395

    CAS  Google Scholar 

  • Henrissat B (2004) Cellulases and their interaction with cellulose. Cellul 1:169–196

    Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    PubMed  CAS  Google Scholar 

  • Hoshino E, Kanda T (2007) Scope and mechanism of cellulase action on different cellulosic substrates. Oyo Toshitsu Kagaku 44(1):87–104

    Google Scholar 

  • Houghton J, Weatherwax S, Ferrell J (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095. US Department of Energy, Washington DC

    Google Scholar 

  • Igarashi K, Wada M, Hori R, Samejima M (2006a) Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface. FEBS J 273(13):2869–2878

    PubMed  CAS  Google Scholar 

  • Igarashi K, Wada M, Samejima M (2006b) Enzymatic kinetics at a solid-liquid interface: hydrolysis of crystalline celluloses by cellobiohydrolase. Cellul Comm 13(4):173–177

    CAS  Google Scholar 

  • Igarashi K, Wada M, Samejima M (2007) Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase. FEBS J 274(7):1785–1792

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Park EY (2006) Okuda N. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97(8):1030–1035

    PubMed  CAS  Google Scholar 

  • Ilmen M, den Haan RB, Penttila M (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofue 4:30

    CAS  Google Scholar 

  • Imkamp F, Muller V (2007) “Acetogenic bacteria” in Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., Chichester

    Google Scholar 

  • Jensen JR, Morinelly JE, Gossen KR, Brodeur-Campbell MJ, Shonnard DR (2010) Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresour Technol 101:2317–2325

    PubMed  CAS  Google Scholar 

  • Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P (2009) D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. Biol Chem 284:27290–27303

    CAS  Google Scholar 

  • Jonsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory byproducts and strategies for minimizing their effects. Bioresour Technol 199:103–112

    PubMed  Google Scholar 

  • Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:6–16

    Google Scholar 

  • Kanda T, Wakabayashi K, Nisizawa K (2008) Modes of action of exo/endo-cellulases in the degradation of celluloses I and II. J Biochem 87(6):1635–1639

    Google Scholar 

  • Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Identification and expression of cellobiohydrolase gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichia pastoris. Protein Expres Purif 58(1):148–153

    CAS  Google Scholar 

  • Khramtsov N, McDade L, Amerik A, Yu E, Divatia K, Tikhonov A, Minto M, Kabongo-Mubalamate G, Markovic Z, Ruiz-Martinez M, Henck S (2011) Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass. Bioresour Technol 102(17):8310–8313

    PubMed  CAS  Google Scholar 

  • Ko CH, Tsai CH, Lin PH, Chang KC, Tu J, Wang YN, Yang CY (2010) Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101:7882–7888

    PubMed  CAS  Google Scholar 

  • Kovacs K, Szakacs G, Zacchi G (2009a) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresourc Technol 100(3):1350–1357

    CAS  Google Scholar 

  • Kovacs K, Szakacs G, Zacchi G (2009b) Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes. Process Biochem 44:1323–1329

    CAS  Google Scholar 

  • Krumholz LR, Bryant MP (1995) Clostridium pfennigii. uses methoxyl groups of monobenzenoids and produces butyrate. International J Systematic Bacteriol 35:454–456

    Google Scholar 

  • Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol 32(4):517–526

    CAS  Google Scholar 

  • Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87

    PubMed  CAS  Google Scholar 

  • Lee JW, Kim HY, Koo BW, Choi DH, Kwon M, Choi IG (2008) Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. J Biosc Bioeng 106:162–167

    CAS  Google Scholar 

  • Li B, Zhuang G, Lin J (2006) Cellulase gene copy number in Pichia influences its expression. Bioproce 4(4):1217

    CAS  Google Scholar 

  • Li YL, Li H, Li AN, Li DC (2009) Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilumand its expression in Pichia pastoris. J Appl Microbiol 106(6):1867–1875

    PubMed  CAS  Google Scholar 

  • Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans, a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei. Inter J System Evol Microbiol 55:2085–2091

    CAS  Google Scholar 

  • Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng 48:204–210

    CAS  Google Scholar 

  • Liu T, Tianhong W, Xian L (2003) Development of Trichoderma reesei cbh1 promoter to improve heterologous gene expression. Chine J Biochem Mol Biol 12:736–742

    Google Scholar 

  • Liu YS, Zeng Y, Luo Y (2009) Does the cellulose-binding module move on the cellulose surface. Cellul 16(4):587–597

    Google Scholar 

  • Liu H, Liu K, Yan M, Xu L (2011) Ouyang, P. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Appl Biochem Biotechnol 164:1150–1159

    PubMed  CAS  Google Scholar 

  • Liu ZS, Wu XL, Kida K, Tang YQ (2012a) Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation. Bioresour Technol 119:224–233

    PubMed  CAS  Google Scholar 

  • Liu ZL, Weber SA, Cotta MA (2012b) Isolation and characterization of a β-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials. BioEner Resear 6(1):65–74

    CAS  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev Microbiol. 40:415–450

    PubMed  CAS  Google Scholar 

  • Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Env Microbiol 47:961–964

    CAS  Google Scholar 

  • Lu J, Huimin W, Ping W, Ping H, Moon C, Wu L, Xiaorong N (2007) 5'-transcribed sequences alterations improve Pichia expression of antimicrobial peptides. Second Military Medical University 28(12):1329–1334

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Reviews 66(3):506–577

    CAS  Google Scholar 

  • Ma L, Zhang J, Zou G, Wang C, Zhou Z (2011) Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enz Microbial Technol 49(4):366–371

    CAS  Google Scholar 

  • Ma J, Zhang K, Liao H, Hector SB, Shi X, Li J (2016) Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1. Biotechnol Biofuels 9:25

    PubMed  PubMed Central  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeilm B, Harveym LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    PubMed  CAS  Google Scholar 

  • Mai Z, Yang J, Tian X, Li J, Zhang S (2013) Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced beta-glucosidase from a marine Streptomycete. Appl Biochem Biotechnol 169(5):1512–1522

    PubMed  CAS  Google Scholar 

  • Mishima D, Tateda M, Ike M, Fujita M (2006) Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresour Technol 97(16):2166–2172

    PubMed  CAS  Google Scholar 

  • Miyauchi S, Teo VS, Bergquist PL, Nevalainen KM (2013) Expression of a bacterial xylanase in Trichoderma reesei under the egl2 and cbh2 glycosyl hydrolase gene promoters. New Biotechnol 30:523–530

    CAS  Google Scholar 

  • Nitsos C, Rova U (2017) Organosolv fractionation of softwood biomass for biofuel and biorefinery applications. Energ 11:50

    Google Scholar 

  • Noparat P, Prasertsan P, O-Thong S, Pang X (2017) Sulfite pretreatment to overcome recalcitrance of lignocellulose for enzymatic hydrolysis of oil palm trunk. Energy Procedia 138:1122–1127

    CAS  Google Scholar 

  • Nuc P, Nuc K (2006) Recombinant protein production in Escherichia coli. Postepy Biochem 52(4):448–456

    PubMed  CAS  Google Scholar 

  • Panttila ME, Andre L, Saloheimo M, Lehtovaara P, Knowles JKC (2007) Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3(3):175–185

    Google Scholar 

  • Paralikar KM, Betrabet SM (2007) Electron-diffraction technique for determination of cellulose crystallinity. J Appl Polym Sci 21(4):899–903

    Google Scholar 

  • Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM (2005) Desulfotomaculum carboxydivorans, a novel sulfate-reducing bacterium capable of growth at 100% CO. International Journal of Systematic and Evol Microbiol 55:2159–2165

    CAS  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30--thirty years of strain improvement. Microbiol 158:58–68

    CAS  Google Scholar 

  • Pielhop T, Amgarten J, Von Rohr R, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:152

    PubMed  PubMed Central  Google Scholar 

  • Puls J, Wood TM (2011) The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms. Bioresour Technol 36(1):15–19

    Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenerg 23:487–493

    CAS  Google Scholar 

  • Ravinder T, Swamy MV, Seenayya G, Reddy G (2001) Clostridium lentocellum SG6-a potential organism for fermentation of cellulose to acetic acid. Bioresour Technol 80:171–177

    PubMed  CAS  Google Scholar 

  • Rizzi M, Klein C, Schulze C, Bui-Thanh NA, Dellweg H (1989) Xylose fermentation by yeasts. 5. Use of ATP balances for modeling oxygen-limited growth and fermentation of yeast Pichia stipitis with xylose as carbon source. Biotechnol Bioeng 34:509–514

    PubMed  CAS  Google Scholar 

  • Saha BC, Cotta MA (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioener 32:971–977

    CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700

    CAS  Google Scholar 

  • Sato M, Matsuura K, Fujii T (2001) Ethanol separation from ethanol-water solution by ultrasonic atomization and its proposed mechanism based on parametric decay instability of capillary wave. J Chemical Phy 114(5):2382–2386

    CAS  Google Scholar 

  • Savage MD, Wu ZG, Daniel SL, Lundie LL, Drake HL (2007) Carbon monoxide dependent chemo lithotrophic growth of Clostridium thermoautotrophicum. Appl Env Microbiol 53:1902–1906

    Google Scholar 

  • Schauder R, Preu R, Jetten M, Fuchs G (1989) Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase. Arch Microbiol 151:84–89

    CAS  Google Scholar 

  • Schell DJ, Riley CJ, Dowe N, Farmer J, Ibsen KN, Ruth MF, Toon ST, Lumpkin RE (2004) A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour Technol 91:179–188

    PubMed  CAS  Google Scholar 

  • Scorer CA, Buckholz RG, Clare JJ, Romanes MA (2009) The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene 136(1-2):111–119

    Google Scholar 

  • Scotcher MC, Rudolph FB, Bennett GN (2005) Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 71:1987–1995

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma SK, Kalra KL, Kocher GS (2004) Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up. Biom Bioener 27:399–402

    CAS  Google Scholar 

  • Shen GJ, Shieh JS, Grethlein AJ, Jain MK, Zeikus JH (1999) Biochemical basis for carbon monoxide tolerance and butonol production by Butyribacterium methylotrophicum. Appl Microbial Biotechnol 51:827–832

    CAS  Google Scholar 

  • Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enz Microbial Technol 40:1234–1243

    CAS  Google Scholar 

  • Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA (2006) Carboxydocella sporoproducens, a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Intern J System Evol Microbiol 56:797

    CAS  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792

    PubMed  CAS  Google Scholar 

  • Stephens C, Christen B, Fuchs T, Sundaram V, Watanabe K, Jenal U (2007) Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. Bacteriol 189:2181–2185

    CAS  Google Scholar 

  • Stone J, Scallan A, Donefer E, Ahlgren E (2009) Digestibility as a simple function of a molecule of a similar size to a cellulase enzyme. Adv Chem Series 95:219–241

    Google Scholar 

  • Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58

    PubMed  CAS  Google Scholar 

  • Taipakova SM, Ischenko A, Saparbayev M, Bissenbaev AK (2011) Cloning and expression of Lentinula edodes cellobiohydrolase CEL6B gene in E. coli. Intern J Biol Chem (1):19-26

  • Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (2008) Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. Biotechnol 65(2-3):163–131

    Google Scholar 

  • Tang B, Pan H, Zhang Q, Ding L (2009) Cloning and expression of cellulase gene EG1 from Rhizopus stolonifer var. reflexus TP-02 in Escherichia coli. Bioresour Technol 100(23):6129–6132

    PubMed  CAS  Google Scholar 

  • Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii, an acetogenic species in clostridial ribosomal-RNA homology group-I. Intern J System Bacteriol 43:232–236

    CAS  Google Scholar 

  • Tao MA, Mei-hu (2006) Progress cellulosic material production of alcohol. Chinese brewing 8:11–15

    Google Scholar 

  • Tarantili PA, Koullas DP, Christakopoulos P, Kekos D, Koukios EG, Macris BJ (2006) Cross-synergism in enzymic hydrolysis of lignocellulosics: mathematical correlations according to a hyperbolic model. Biomass Bioenerg 10(4):213–219

    Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222

    PubMed  CAS  Google Scholar 

  • Turn SQ, Kinoshita CM, Jakeway LA, Jenkins BM, Baxter LL, Wu BC, Blevins LG (2003) Fuel characteristics of processed, high-fiber sugarcane. Fuel Process Technol 81:35–55

    CAS  Google Scholar 

  • Valjamae P (2002) The kinetics of cellulose enzymatic hydrolysis: implications of the synergism between enzymes. PhD thesis. Uppsala University, Uppsala, Sweden

  • Van-Wyk N, den Haan R, van Zyl WH (2010) Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87(5):1813–1820

    PubMed  Google Scholar 

  • Verduyn C, Kleef R, Frank Jzn J, Schreuder H, Dijken JP, Scheffers WA (1985) NAD (P) H-dependent aldose reductase from the xylose-fermenting yeast Pichia stipitis. Antonie Van Leeuwenhoek 51:562–562

    Google Scholar 

  • Wang PY, Johnson BF, Schneider H (1980) Fermentation of D-xylose by yeasts using glucose isomerase in the medium to convert D-xylose to D-xylulose. Biotechnol Lett 2:273–278

    Google Scholar 

  • Wang W, Wang P, Hu RA (2011) Novel screening method of cellulase-producing bacteria based on Phytophthora parasitica var. nicotianae. Appl Biochem Microbiol 47(1):58–60

    Google Scholar 

  • Wang S, Liu G, Wang J, Yu J, Huang B, Xing M (2013) Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes. Indust Microbiol Biotechnol 4:177–185

    Google Scholar 

  • Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM (2007) Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186(1):37–44

    Google Scholar 

  • Wegner GH (2010) Emerging applications of the methylotrophic yeasts. FEMS Microbiol Lett 87(3-4):279–283

    Google Scholar 

  • Wong KKY, Deverell KF, Mackie KL, Clark TA, Donaldson LA (2008) The relationship between fiber-porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 31(5):447–456

    Google Scholar 

  • Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. Fed Am Soc Exp Biol 5:156–163

    PubMed  CAS  Google Scholar 

  • Wu H, Fu Q, Giles R, Bartle J (2008) Production of mallee biomass in Western Australia: energy balance analysis. Energ Fuels 22(1):190–198

    CAS  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25(4):153–157

    PubMed  CAS  Google Scholar 

  • Xiong XQ, Liao HD, Ma JS, Liu XM, Zhang LY, Shi XW, Yang XL, Lu XN, Zhu YH (2014) Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol 58:123–129

    PubMed  CAS  Google Scholar 

  • Xu Q, Tucker MP, Arenkiel P (2009) Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules. Cellulose 16(1):19–26

    CAS  Google Scholar 

  • Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohy Polym 79:914–920

    CAS  Google Scholar 

  • Yang J, Bae JY, Lee YM, Kwon H, Moon HY, Kang HA, Yee SB, Kim W, Choi W (2011) Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Biotechnol Bioeng 108:1776–1787

    PubMed  CAS  Google Scholar 

  • Yang S, Hua C, Yan Q, Li Y, Jiang Z (2013) Biochemical properties of a novel glycoside hydrolase family-1 beta-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohy Polym 92(1):784–791

    CAS  Google Scholar 

  • Yoo CG, Pu Y, Ragauskas AJ, Turner C, Wang J (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11

    Google Scholar 

  • Yu H, Guo G, Zhang X, Yan K, Xu C (2009) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100:5170–5175

    PubMed  CAS  Google Scholar 

  • Zhang Q, Cai W (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4–F3. Biomass Bioener 32:1130–1135

    CAS  Google Scholar 

  • Zhang C, Su X, Xiong X, Hu Q, Amartey S, Tan X, Qin W (2016a) 60Co-γ radiation-induced changes in the physical and chemical properties of rapeseed straw. Biomass Bioener 85:207–214

    CAS  Google Scholar 

  • Zhang CW, Xia SQ, Ma PS (2016b) Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour Technol 219:1–5

    PubMed  CAS  Google Scholar 

  • Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31770077) and the “Transformational Technologies for Clean Energy and Demonstration,” Strategic Priority Research Program of the Chinese Academy of Sciences (XDA 21060400). Nasir Ali was supported by the CAS President’s International Fellowship Initiative Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Lu or Xiang-Chen Fang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Zhang, Q., Liu, ZY. et al. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products. Appl Microbiol Biotechnol 104, 455–473 (2020). https://doi.org/10.1007/s00253-019-10158-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10158-w

Keywords

Navigation