Skip to main content
Log in

Dielectric property measurements as a method to determine the physiological state of Kluyveromyces marxianus and Saccharomyces cerevisiae stressed with furan aldehydes

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cell physiology parameters are essential aspects of biological processes; however, they are difficult to determine on-line. Dielectric spectroscopy allows the on-line estimation of viable cells and can provide important information about cell physiology during culture. In this study, we investigated the dielectric property variations in Kluyveromyces marxianus SLP1 and Saccharomyces cerevisiae ERD yeasts stressed by 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde during aerobic growth. The dielectric properties of cell permittivity, specific membrane capacitance (Cm), and intracellular conductivity (σIn) were considerably affected by furan aldehydes in the same way that the cell population, viability, cell size, substrate consumption, organic acid production, and respiratory parameters were. The yeasts stressed with furan aldehydes exhibited three physiological states (φ): adaptation, replicating, and nonreplicating states. During the adaptation state, there were small and stable signs of permittivity, Cm, and σIn; additionally, no cell growth was observed. During the replicating state, cell growth was restored, and the cell viability increased; in addition, the permittivity and σIn increased rapidly and reached their maximum values, while the Cm decreased. In the nonreplicating state, the permittivity and σIn were stable, and Cm decreased to its minimum value. Our results demonstrated that knowing dielectric properties allowed us to obtain information about the physiological state of the cells under control and stressed conditions. Since the permittivity, Cm, and σIn are directly associated with the physiological state of the yeast, these results should contribute to a better understanding of the stress response of yeasts and open the possibility to on-line monitor and control the physiological state of the cell in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Funding

This study was funded by the “Fondo de Sustentabilidad Energética” Projects 245750 and 249564 CONACYT-SENER. Flores-Cosío Guillermo received a grant from CONACYT, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Amaya-Delgado.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 592 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Cosío, G., Herrera-López, E.J., Arellano-Plaza, M. et al. Dielectric property measurements as a method to determine the physiological state of Kluyveromyces marxianus and Saccharomyces cerevisiae stressed with furan aldehydes. Appl Microbiol Biotechnol 103, 9633–9642 (2019). https://doi.org/10.1007/s00253-019-10152-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10152-2

Keywords

Navigation