Skip to main content

Advertisement

Log in

Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nanosized conductive carbon materials have been reported to stimulate methanogenesis by anaerobic microbiomes, while other studies have shown their antimicrobial activities. The present study examined effects of conductive carbon nanoparticles (carbon black Vulcan, CB) on methanogenesis from glucose by anaerobic sludge. We found that a relatively high concentration (e.g., 2% w/v) of CB entirely inhibited the methanogenesis, where a substantial amount of acetate was accumulated after degradation of glucose. Quantitative real-time PCR assays and metabarcoding of 16S rRNA amplicons revealed that, while bacteria were stably present irrespective of the presence and absence of CB, archaea, in particular methanogens, were largely decreased in the presence of CB. Pure-culture experiments showed that methanogenic archaea were more seriously damaged by CB than fermentative bacteria. These results demonstrate that CB specifically inhibits methanogens in anaerobic sludge. We attempted to supplement cathode chambers of microbial electrolysis cells with CB for inhibiting methanogenesis from hydrogen, demonstrating that hydrogen is stably produced in the presence of CB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bhattacharyya A, Majumder NS, Basak P, Mukherji S, Roy D, Nag S, Haldar A, Chattopadhyay D, Mitra S, Bhattacharyya M, Ghosh A (2015) Diversity and distribution of archaea in the mangrove sediment of Sundarbans. Archaea 2015:968582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catal T, Lesnik KL, Liu H (2015) Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Bioresour Technol 187:77–83

    Article  CAS  PubMed  Google Scholar 

  • Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS (2010) Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int J Hydrog Energy 35:13379–13386

    Article  CAS  Google Scholar 

  • Chen S, Rotaru A-E, Shrestha PM, Malvankar NS, Liu F, Fan W (2014) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daffonchio D, Thaveesri J, Verstraete W (1995) Contact angle measurement and cell hydrophobicity of granular sludge from upflow anaerobic sludge bed reactors. Appl Environ Microbiol 61:3676–3680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry JG (2012) Methanogenesis: ecology, physiology, biochemistry & genetics. Springer Science & Business Media, Berlin

    Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Keller J (2007) Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ Sci Technol 41:2915–2921

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Zhou T, Wang J, You L, Lu Y, Yu L, Zhou S (2019) NanoFe3O4 as solid electron shuttles to accelerate acetotrophic methanogenesis by Methanosarcina barkeri. Front Microbiol 10:388

    Article  PubMed  PubMed Central  Google Scholar 

  • Hang J, Desai V, Zavaljevski N, Yang Y, Lin X, Satya RV, Martinez LJ, Blaylock JM, Jarman RG, Thomas SJ, Kuschner RA (2014) 16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles. Microbiome 2:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Luo H, Liu G, Zhang R, Li J, Fu S (2014) Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation. Environ Sci Technol 48:10482–10488

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Kosaka T, Hori K, Hotta Y, Watanabe K (2005) Coaggregation facilitates interspecies hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter thermautotrophicus. Appl Environ Microbiol 71:7838–7845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012a) Microbial interspecies electron transfer mediated by electric currents through conductive minerals. Proc Natl Acad Sci U S A 109:10042–10049

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012b) Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. Environ Microbiol 14:1646–1654

    Article  CAS  PubMed  Google Scholar 

  • Kouzuma A, Kato S, Watanabe K (2015) Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 6:477

    PubMed  PubMed Central  Google Scholar 

  • Li LL, Tong ZH, Fang CY, Chu J, Yu HQ (2015) Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res 70:1–8

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    Article  CAS  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  CAS  PubMed  Google Scholar 

  • Martins G, Salvador AF, Pereira L, Alves MM (2018) Methane production and conductive materials: a critical review. Environ Sci Technol 52:10241–10253

    Article  CAS  PubMed  Google Scholar 

  • Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  • Mayer F, Lurz R, Schoberth S (1977) Electron microscopic investigation of the hydrogen-oxidizing acetate-forming anaerobic bacterium Acetobacterium woodii. Arch Microbiol 115:207–213

    Article  CAS  PubMed  Google Scholar 

  • Moore AD, Holmes SM, Roberts EP (2012) Evaluation of porous carbon substrates as catalyst supports for the cathode of direct methanol fuel cells. RSC Adv 2:1669–1674

    Article  CAS  Google Scholar 

  • Nepal D, Balasubramanian S, Simonian AL, Davis VA (2008) Strong antimicrobial coatings: single-walled carbon nanotubes armored with biopolymers. Nano Lett 8:1896–1901

    Article  CAS  PubMed  Google Scholar 

  • Newton GJ, Mori S, Nakamura R, Hashimoto K, Watanabe K (2009) Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl Environ Microbiol 75:7674–7681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Pérez-Rodríguez S, Pastor E, Lázaro MJ (2018) Electrochemical behavior of the carbon black Vulcan XC-72R: influence of the surface chemistry. Int J Hydrog Energy 43:7911–7922

    Article  CAS  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632e40

    Article  CAS  Google Scholar 

  • Salvador AF, Martins G, Melle-Franco M, Serpa R, Stams AJ, Cavaleiro AJ, Pereira A, Alves MM (2017) Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environ Microbiol 19:2727–2739

    Article  CAS  PubMed  Google Scholar 

  • Shah FA, Mahmood Q, Rashid N, Pervez A, Raja IA, Shah MM (2015) Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sust Energ Rev 42:627–642

    Article  CAS  Google Scholar 

  • Shin SG, Lee S, Lee C, Hwang K, Hwang S (2010) Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresour Technol 101:9461–9470

    Article  CAS  PubMed  Google Scholar 

  • Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Miyahara M, Kouzuma A, Watanabe K (2016) Electricity generation from rice bran in microbial fuel cells. Bioresour Bioprocess 3:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44:253–262

    Article  CAS  PubMed  Google Scholar 

  • Wen YH, Shao L, Zhao PC, Wang BY, Cao GP, Yang YS (2017) Carbon coated stainless steel mesh as a low-cost and corrosion-resistant current collector for aqueous rechargeable batteries. J Mater Chem 5:15752–15758

    Article  CAS  Google Scholar 

  • Xu S, He C, Luo L, Liu F, He P, Cui L (2015) Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresour Technol 196:606–612

    Article  CAS  PubMed  Google Scholar 

  • Yadav T, Mungray AA, Mungray AK (2016) Effect of multiwalled carbon nanotubes on UASB microbial consortium. Environ Sci Pollut Res 23:4063–4072

    Article  CAS  Google Scholar 

  • Yeates C, Gillings MR, Davison AD, Altavilla N, Veal DA (1998) Methods for microbial DNA extraction from soil for PCR amplification. Biol Proced Online 1:40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by JSPS KAKENHI (Grant Number 15H01753).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Watanabe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujinawa, K., Nagoya, M., Kouzuma, A. et al. Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells. Appl Microbiol Biotechnol 103, 6385–6392 (2019). https://doi.org/10.1007/s00253-019-09946-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09946-1

Keywords

Navigation