Skip to main content

Advertisement

Log in

Enhanced Production of Biohydrogen Through Combined Operational Strategies

  • Materials for Clean Energy Production and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Waste treatment facilities are becoming an opportunity for the generation of renewable energy carriers. Until now, methane production was commonplace in waste treatment processes, but nowadays hydrogen is awakening a high interest. Dark fermentation is a technology based on the recovery of hydrogen that is generated during the first stages of anaerobic digestion, preventing its consumption by methanogenic bacteria. Recently, nanotechnology has been introduced to improve the rate of dark fermentation. Nanoparticles, specifically inorganic ones such as iron, can increase the rate of biohydrogen production. On the other hand, biohydrogen generation from microalgae has been reported as a highly attractive approach that can achieve carbon neutrality and bioenergy sustainability by producing a benign clean energy carrier. Recent research has illustrated how biohydrogen generation can be dramatically enhanced by the presence of metal or metallic oxide nanoparticles, as they may improve the bioactivity of hydrogenase and ferredoxin oxidoreductase as well as electron transfer. Metal oxide nanoparticles can be accumulated inside cells as well as interact with intracellular substances through physical, chemical, or biological mechanisms. The present work focuses on exploring operational strategies that include harnessing the potential of nanotechnology in the activation of microorganisms of interest that favor hydrogen production by biological routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Y. Show, Y. Yan, C. Zong, N. Guo, J.S. Chang, and D.J. Lee, Bioresour. Technol. 289, 121747 (2019).

    Article  Google Scholar 

  2. G. Kumar, T. Mathimani, E.R. Rene, and A. Pugazhendhi, Int. J. Hydrogen Energy 44(26), 13106 (2019).

    Article  Google Scholar 

  3. A. Pareek, R. Dom, J. Gupta, J. Chandran, V. Adepu, and P.H. Borse, Mater. Sci. Energy Technol. 3, 319 (2020).

    Google Scholar 

  4. A. Hussain and A.S. Nishat, The Energy Challenge: Moving from Fossil Fuels to Biofuels, Hydrogen, and Green Energy Sources (CUNY New York City College of Technology, 2022). https://academicworks.cuny.edu/ny_pubs/910/. Accessed 02 Sept 2022.

  5. M.G. Romero, MoleQla: revista de Ciencias de la Universidad Pablo de Olavide 38(8) (2020).

  6. K.E. Redding, J. Appel, M. Boehm, W. Schuhmann, M.M. Nowaczyk, I. Yacoby, and K. Gutekunst, Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2022.04.007 (2022).

    Article  Google Scholar 

  7. M.A. Javed, A.M. Zafar, A.A. Hassan, A.A. Zaidi, M. Farooq, A. El Badawy, T. Lundquist, M.M.A. Mohamed, and S. Al-Zuhair, J. Environ. Chem. Eng. 10(1), 107003 (2022).

    Article  Google Scholar 

  8. J.F. Soares, T.C. Confortin, I. Todero, F.D. Mayer, and M.A. Mazutti, Renew. Sustain. Energy Rev. 117, 109484 (2020).

    Article  Google Scholar 

  9. V.G. Sharmila, K. Tamilarasan, M.D. Kumar, G. Kumar, S. Varjani, S.A. Kumar, and J.R. Banu, Int. J. Hydrogen Energy 47(34), 15309 (2022).

    Article  Google Scholar 

  10. A. Chapman, K. Itaoka, K. Hirose, F.T. Davidson, K. Nagasawa, A.C. Lloyd, M.E. Webber, Z. Kurban, S. Managi, T. Tamaki, M.C. Lewis, R.E. Hebner, and Y. Fujii, Int. J. Hydrogen Energy 44(13), 6371 (2019).

    Article  Google Scholar 

  11. G.D. Saratale, R.G. Saratale, J.R. Banu, and J.S. Chang, Biohydrogen (Elsevier, Amsterdam, 2019), pp 247–277.

    Book  Google Scholar 

  12. T.B. Madavi, S. Chauhan, M. Jha, K.Y. Choi, and S.D. Pamidimarri, Chem. Eng. Technol. https://doi.org/10.1002/ceat.202000527 (2021).

    Article  Google Scholar 

  13. S. Shanmugam, A. Hari, A. Pandey, T. Mathimani, L. Felix, and A. Pugazhendhi, Fuel 270, 117453 (2020).

    Article  Google Scholar 

  14. A.R. Limongi, E. Viviano, M. De Luca, R.P. Radice, G. Bianco, and G. Martelli, Appl. Sci. 11(4), 1616 (2021).

    Article  Google Scholar 

  15. P. Xie, C. Chen, C. Zhang, G. Su, N. Ren, and S.H. Ho, Water Res. 172, 115475 (2020).

    Article  Google Scholar 

  16. T.D. Moshood, G. Nawanir, and F. Mahmud, Environ. Challenges 5, 100207 (2021).

    Article  Google Scholar 

  17. N.R. Sudha, D. Varaprasad, P.V. Bramhachari, P. Sudhakar, and T. Chandrasekhar, J. Appl. Biol. Biotechnol. 9(5), 1 (2021).

    Google Scholar 

  18. L. Peng, D. Fu, H. Chu, Z. Wang, and H. Qi, Environ. Chem. Lett. 18(2), 285 (2020).

    Article  Google Scholar 

  19. J. Jiménez-Llanos, M. Ramírez-Carmona, L. Rendon-Castrillón, and C. Ocampo-López, Int. J. Hydrogen Energy 45(15), 8310 (2020).

    Article  Google Scholar 

  20. C.Y. Lin and S.H. Shei, Int. J. Hydrogen Energy 33(2), 587 (2008).

    Article  Google Scholar 

  21. A.A. Tsygankov, S.N. Kosourov, I.V. Tolstygina, M.L. Ghirardi, and M. Seibert, Int. J. Hydrogen Energy 31(11), 1574 (2006).

    Article  Google Scholar 

  22. W. Khetkorn, R.P. Rastogi, A. Incharoensakdi, P. Lindblad, D. Madamwar, A. Pandey, and C. Larroche, Bioresour. Technol. 243, 1194 (2017).

    Article  Google Scholar 

  23. S. Mona, S.S. Kumar, V. Kumar, K. Parveen, N. Saini, B. Deepak, and A. Pugazhendhi, Sci. Total Environ. 728, 138481 (2020).

    Article  Google Scholar 

  24. A. Tiwari and A. Pandey, Int. J. Hydrogen Energy 37(1), 139 (2012).

    Article  Google Scholar 

  25. S. Mona, A. Kaushik, and C.P. Kaushik, Bioresour. Technol. 102(3), 3200 (2011).

    Article  Google Scholar 

  26. M. Anwar, S. Lou, L. Chen, H. Li, and Z. Hu, Bioresour. Technol. 292, 121972 (2019).

    Article  Google Scholar 

  27. K. Bolatkhan, B.D. Kossalbayev, B.K. Zayadan, T. Tomo, T.N. Veziroglu, and S.I. Allakhverdiev, Int. J. Hydrogen Energy 44(12), 5799 (2019).

    Article  Google Scholar 

  28. N. Srivastava, M. Srivastava, B.D. Malhotra, V.K. Gupta, P.W. Ramteke, R.N. Silva, P. Skukla, and P.K. Mishra, Biotechnol. Adv. 37(6), 107384 (2019).

    Article  Google Scholar 

  29. A.C. Vilbert, Y. Liu, H. Dai, and Y. Lu, Curr. Opin. Electrochem. 30, 100780 (2021).

    Article  Google Scholar 

  30. M.M. El-Dalatony, Y. Zheng, M.K. Ji, X. Li, and E.S. Salama, Bioresour. Technol. 318, 124253 (2020).

    Article  Google Scholar 

  31. V.I. Grechanik and A.A. Tsygankov, Biophys. Rev. https://doi.org/10.1007/s12551-022-00977-z (2022).

    Article  Google Scholar 

  32. Y. Wang, H. Yang, X. Zhang, F. Han, W. Tu, and W. Yang, Small Methods 4(3), 1900514 (2020).

    Article  Google Scholar 

  33. K. Batyrova, A. Gavrisheva, E. Ivanova, J. Liu, and A. Tsygankov, Int. J. Mol. Sci. 16(2), 2705 (2015).

    Article  Google Scholar 

  34. K. Wang, K.S. Khoo, K.W. Chew, A. Selvarajoo, W.H. Chen, J.S. Chang, and P.L. Show, Front. Energy Res. 9, 660399 (2021).

    Article  Google Scholar 

  35. D.W. Yang, J.W. Syn, C.H. Hsieh, C.C. Huang, and L.F. Chien, Int. J. Hydrogen Energy 44(5), 2533 (2019).

    Article  Google Scholar 

  36. H. Masukawa, M. Mochimaru, and H. Sakurai, Appl. Microbiol. Biotechnol. 58(5), 618 (2002).

    Article  Google Scholar 

  37. S. Wu, L. Xu, R. Huang, and Q. Wang, Bioresour. Technol. 102(3), 2610 (2011).

    Article  Google Scholar 

  38. S. Ban, W. Lin, Z. Luo, and J. Luo, Bioresour. Technol. 275, 425 (2019).

    Article  Google Scholar 

  39. L. Xu, X. Cheng, and Q. Wang, Int. J. Hydrogen Energy 42(36), 22713 (2017).

    Article  Google Scholar 

  40. N. Fakhimi, D. Gonzalez-Ballester, E. Fernández, A. Galván, and A. Dubini, Cells 9(6), 1353 (2020).

    Article  Google Scholar 

  41. N. Fakhimi and O. Tavakoli, Mater. Sci. Energy Technol. 2(1), 1 (2019).

    Google Scholar 

  42. X. Li, S. Huang, J. Yu, Q. Wang, and S. Wu, Int. J. Hydrogen Energy 38(25), 10779 (2013).

    Article  Google Scholar 

  43. T. Hua, S. Li, F. Li, Q. Zhou, and B.S. Ondon, J. Chem. Technol. Biotechnol. 94(6), 1697 (2019).

    Article  Google Scholar 

  44. J. Kim, A. Jun, O. Gwon, S. Yoo, M. Liu, J. Shin, T.H. Lim, and G. Kim, Nano Energy 44, 121 (2018).

    Article  Google Scholar 

  45. A.M. López-Hidalgo, A. Smoliński, and A. Sanchez, Int. J. Hydrogen Energy 47(27), 13300 (2022).

    Article  Google Scholar 

  46. O. Sarkar, R. Katakojwala, and S.V. Mohan, Green Chem. 23(1), 561 (2021).

    Article  Google Scholar 

  47. S. Dahiya, S. Chatterjee, O. Sarkar, and S.V. Mohan, Bioresour. Technol. 321, 124354 (2021).

    Article  Google Scholar 

  48. T.A. Shat, L. Zhihe, L. Zhiyu, A. Zhang, D. Lu, W. Fang, and H. Xuan, Environ. Sci. Pollut. Res. Int. https://doi.org/10.1007/s11356-022-22443-9 (2022).

    Article  Google Scholar 

  49. Y. Zhang, F. Liu, Q. Hao, and L. Xiao, Fuel 276, 118049 (2020).

    Article  Google Scholar 

  50. I. Ergal, O. Gräf, B. Hasibar, M. Steiner, S. Vukotić, G. Bochmann, W. Fuchs, and S.K.M.R. Rittmann, Commun Biol 3, 443 (2020).

    Article  Google Scholar 

  51. L. Cabrol, A. Marone, E. Tapia-Venegas, J.P. Steyer, G. Ruiz-Filippi, and E. Trably, FEMS Microbiol. Rev. 41(2), 158 (2017).

    Article  Google Scholar 

  52. E. Elbeshbishy, B.R. Dhar, G. Nakhla, and H.S. Lee, Renew. Sustain. Energy Rev. 79, 656 (2017).

    Article  Google Scholar 

  53. M. Canto-Robertos, C. Quintal-Franco, C. Ponce-Caballero, V.D. Lille, and I. Moreno-Andrade, Braz. J. Chem. Eng. https://doi.org/10.1007/s43153-022-00235-5 (2022).

    Article  Google Scholar 

  54. S. Karekar, R. Stefanini, and B. Ahring, Microorganisms 10(2), 397 (2022).

    Article  Google Scholar 

  55. K. Li, H. Gong, Y. Liu, J. Ma, C. Shi, and K. Wang, J. Environ. Manage. 303, 113999 (2022).

    Article  Google Scholar 

  56. H. Singh, S. Tomar, K.A. Qureshi, M. Jaremko, and P.K. Rai, Energies 15(3), 999 (2022).

    Article  Google Scholar 

  57. A. Nishimura, T. Takada, S. Ohata, and M.L. Kolhe, Fuels 2(2), 194 (2021).

    Article  Google Scholar 

  58. L.R. Ramos, C.A. de Menezes, L.A. Soares, I.K. Sakamoto, M.B.A. Varesche, and E.L. Silva, Bioproc. Biosyst. Eng. 43(4), 673 (2020).

    Article  Google Scholar 

  59. M. El-Qelish, G.K. Hassan, S. Leaper, P. Dessì, and A. Abdel-Karim, J. Environ. Manag. 316, 115239 (2022).

    Article  Google Scholar 

  60. M. Zhou, J. Zhou, M. Tan, J. Du, B. Yan, J.W. Wong, and Y. Zhang, Bioresour. Technol. 245, 44 (2017).

    Article  Google Scholar 

  61. S. Dahiya and S.V. Mohan, Chem. Eng. J. 357, 787 (2019).

    Article  Google Scholar 

  62. E. Castelló, A.D.N. Ferraz-Junior, C. Andreani, M.P. Anzola-Rojas, L. Borzacconi, G. Buitrón, J. Carrillo-Reyes, S.D. Gomes, S.I. Maintinguer, I. Moreno-Andrade, R. Palomo-Briones, E. Razo-Flores, M. Schiappacasse-Dasati, E. Tapia-Venegas, I. Valdez-Vázquez, A. Vesga-Baron, M. Zaiat, and C. Etchebehere, Renew. Sustain. Energy Rev. 119, 109602 (2020).

    Article  Google Scholar 

  63. O. García-Depraect, R. Castro-Muñoz, R. Muñoz, E.R. Rene, E. León-Becerril, I. Valdez-Vazquez, G. Kumar, L.C. Reyes-Alvarado, L.J. Martínez-Mendoza, J. Carrillo-Reyes, and G. Buitrón, Bioresour. Technol. 324, 124595 (2021).

    Article  Google Scholar 

  64. Y. Chen, Y. Yin, and J. Wang, Int. J. Hydrogen Energy 46(13), 8986 (2021).

    Article  Google Scholar 

  65. G. Sołowski, M.S. Shalaby, H. Abdallah, A.M. Shaban, and A. Cenian, Renew. Sustain. Energy Rev. 82, 3152 (2018).

    Article  Google Scholar 

  66. J.R. Banu, R.Y. Kannah, M.D. Kumar, M. Gunasekaran, P. Sivagurunathan, J.H. Park, and G. Kumar, Bioresour. Technol. 268, 787 (2018).

    Article  Google Scholar 

  67. R. Das, A. Dwevedi, and A.M. Kayastha, in Polymeric Supports for Enzyme Immobilization: Opportunities and Applications. ed. by A. Dwevedi (Academic Press, London, 2021), p. 1.

    Google Scholar 

  68. B. Sharma, A. Verma, D. Chettri, S. Singh, and A.K. Verma, in Bio-Clean Energy Technologies, vol 1. ed. by P. Chowdhary, N. Khanna, S. Pandit, and R. Kumar (Springer, Singapore, 2022), p. 209.

    Chapter  Google Scholar 

  69. A. Pugazhendhi, S. Shobana, D.D. Nguyen, J.R. Banu, P. Sivagurunathan, S.W. Chang, V.K. Ponnusamy, and G. Kumar, Int. J. Hydrogen Energy 44(3), 1431 (2019).

    Article  Google Scholar 

  70. S.R. Das and N. Basak, Bioproc. Biosyst. Eng. 44(1), 1 (2021).

    Article  Google Scholar 

  71. P.T. Sekoai, A. Ghimire, O.T. Ezeokoli, S. Rao, W.Y. Ngan, O. Habimana, Y. Yao, A.H.Y. Fung, K.O. Yoro, M.O. Daramola, and C.H. Hung, Renew. Sustain. Energy Rev. 143, 110971 (2021).

    Article  Google Scholar 

  72. A. Ahmad, I. Othman, K. Rambabu, G. Bharath, H. Taher, S.W. Hasan, and F. Banat, Environ. Technol. Innov. 24, 101862 (2021).

    Article  Google Scholar 

  73. F. Asunis, G. Cappai, A. Carucci, G. De Gioannis, P. Dessì, A. Muntoni, A. Polettini, R. Pomi, A. Rossi, D. Spiga, and C. Trois, Waste Manag. Res. https://doi.org/10.1177/0734242X221103940 (2022).

    Article  Google Scholar 

  74. O. Sarkar and S. Venkata Mohan, Biofuel Res. J. 3(3), 458 (2016).

    Article  Google Scholar 

  75. P. Sampath, K.R. Reddy, C.V. Reddy, N.P. Shetti, R.V. Kulkarni, and A.V. Raghu, Chem. Eng. Technol. 43(7), 1240 (2020).

    Article  Google Scholar 

  76. D.H. Kim and M.S. Kim, Bioresour. Technol. 102(18), 8423 (2011).

    Article  Google Scholar 

  77. H. Wu, C. Wang, P. Chen, A.Y. He, F.X. Xing, X.P. Kong, and M. Jiang, Int. J. Hydrogen Energy 42(10), 6547 (2017).

    Article  Google Scholar 

  78. S. Macrelli, M. Galbe, and O. Wallberg, Biotechnol. Biofuels 7(1), 1 (2014).

    Article  Google Scholar 

  79. J. Arun, T. Sasipraba, K.P. Gopinath, P. Priyadharsini, S. Nachiappan, N. Nirmala, S.S. Dawn, N.T.L. Chi, and A. Pugazhendhi, Fuel 327, 125112 (2022).

    Article  Google Scholar 

  80. G. Yang and J. Wang, Bioresour. Technol. 266, 413 (2018).

    Article  Google Scholar 

  81. D. Nath, A.K. Manhar, K. Gupta, D. Saikia, S.K. Das, and M. Mandal, Bull. Mater. Sci. 38(6), 1533 (2015).

    Article  Google Scholar 

  82. A. Elreedy, E. Ibrahim, N. Hassan, A. El-Dissouky, M. Fujii, C. Yoshimura, and A. Tawfik, Energy Convers. Manag. 140, 133 (2017).

    Article  Google Scholar 

  83. Y. Zhang and J. Shen, Int. J. Hydrogen Energy 32(1), 17 (2007).

    Article  Google Scholar 

  84. Y. Zhao and Y. Chen, Environ. Sci. Technol. 45(19), 8589 (2011).

    Article  Google Scholar 

  85. A. Pandey, K. Gupta, and A. Pandey, Biomass Bioenergy 72, 273 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of this work by the CDTI-Spanish Ministry of Science and Innovation in the frame of the project H24NEWAGE (Ref. CER-20211002) and by CYTED (Ibero-American Program of Science and Technology for Development) in the frame of the H2TRANSEL network (Ref. 721RT0122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolores Hidalgo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, D., Martín-Marroquín, J.M. Enhanced Production of Biohydrogen Through Combined Operational Strategies. JOM 75, 718–726 (2023). https://doi.org/10.1007/s11837-022-05572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05572-x

Navigation