Skip to main content
Log in

Microbiological synthesis of stereoisomeric 7(α/β)-hydroxytestololactones and 7(α/β)-hydroxytestolactones

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbiological synthesis of 7α- and 7β-hydroxy derivatives of testololactone and testolactone was developed based on bioconversion of dehydroepiandrosterone (DHEA) by fungus of Isaria fumosorosea VKM F-881 with subsequent modification of the obtained stereoisomers by actinobacteria. The first stage included obtaining of the stereoisomers of 3β,7(α/β)-dihydroxy-17a-oxa-D-homo-androst-5-en-17-ones in the preparative amounts. Then the conversion of 7-hydroxylated D-lactones obtained by selected actinobacteria of Nocardioides simplex VKM Ac-2033D, Saccharopolyspora hirsuta VKM Ac-666, and Streptomyces parvulus MTOC Ac-21v was studied. Under the transformation of 3β,7α-dihydroxy-17a-oxa-D-homo-androst-5-en-17-one and its corresponding 7β-stereoisomer by N. simplex VKM Ac-2033D and S. hirsuta VKM Ac-666 the 7α- and 7β-hydroxy-17a-oxa-D-homo-androst-4-ene-3,17-dione (7α- and 7β-hydroxytestololactone), 7α- and 7β-hydroxy-17a-oxa-D-homo-androsta-1,4-diene-3,17-dione (7α- and 7β-hydroxytestolactone) were obtained with molar yields in a range of 60.3–90.9 mol%. The crystalline products of 7α-hydroxytestololactone, 7α-hydroxytestolactone, and their corresponding 7β-hydroxy stereoisomers were isolated, and their structures were confirmed by mass spectrometry and 1H-NMR spectroscopy analyses. The strain of Str. parvulus MTOC Ac-21v transformed 3β,7(α/β)-dihydroxy-17a-oxa-D-homo-androst-5-en-17-ones into the corresponding 3-keto-4-ene analogs and did not show 3-ketosteroid 1(2)-dehydrogenase activity. The activity of actinobacteria towards steroid D-lactones was hitherto unreported.

The results contribute to the knowledge of metabolic versatility of actinobacteria capable of transforming steroid substrates and may be applied in the synthesis of potential aromatase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgments

Authors are grateful to thank Ph.D. I. S. Levina (N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences) for mass spectrometric and 1H-NMR analysis.

Funding

The research was carried out within the State Assignment (No. 0114-2018-0004). The work was supported by Russian Science Foundation (No. 18-14-00361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Lobastova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobastova, T.G., Khomutov, S.M., Shutov, A.A. et al. Microbiological synthesis of stereoisomeric 7(α/β)-hydroxytestololactones and 7(α/β)-hydroxytestolactones. Appl Microbiol Biotechnol 103, 4967–4976 (2019). https://doi.org/10.1007/s00253-019-09828-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09828-6

Keywords

Navigation