Skip to main content
Log in

Effects of glutamic acid on the production of monacolin K in four high-yield monacolin K strains in Monascus

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Monascus purpureus is a traditional Chinese microbe that can be used as a medicinal herb and is edible. To improve the yield of monacolin K, we optimized the medium of M. purpureus with high-yield monacolin K strains. When high-yield strains C8, D8, E3, and I1 were grown in glutamic medium instead of the original medium, monacolin K production was increased. Among these strains, C8 exhibited the highest monacolin K production in glutamic acid medium, with levels increased 4.80-fold. RT-qPCR demonstrated that glutamic acid enhanced the expression of mokC and mokG. Observation of Monascus mycelium morphology using SEM showed that mycelia exhibited more folds, swelling, curves, and fractures. Thus, glutamic acid may promote the growth of the mycelium and appeared to increase the permeability of the cell membrane. This lays a foundation for research on the regulatory effect of glutamic acid and provides a theoretical basis for the industrialization and commercialization of Monascus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M, Yoshikawa H (2002) Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol Gen Genomics 267(5):636–646

    Article  CAS  Google Scholar 

  • Ahn J, Jung J, Hyung W, Haam S, Shin C (2006) Enhancement of monascus pigment production by the culture of Monascus sp. J101 at low temperature. Biotechnol Prog 22(1):338–340. https://doi.org/10.1021/bp050275o

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Tseng CP, Liaw LL, Wang CL, Chen IC, Wu WJ, Wu MD, Yuan GF (2008) Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J Agric Food Chem 56(14):5639–5646

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Yuan GF, Hsieh SY, Lin YS, Wang WY, Liaw LL, Tseng CP (2010) Identification of the mokH gene encoding transcription factor for the upregulation of monacolin K biosynthesis in Monascus pilosus. J Agric Food Chem 58(1):287–293. https://doi.org/10.1021/jf903139x

    Article  CAS  PubMed  Google Scholar 

  • Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, Chen F (2015) Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci Food Saf 14(5):555–567. https://doi.org/10.1111/1541-4337.12145

  • Chuang CY, Shi YC, You HP, Lo YH, Pan TM (2011) Antidepressant effect of GABA-rich monascus-fermented product on forced swimming rat model. J Agric Food Chem 59(7):3027–3034. https://doi.org/10.1021/jf104239m

    Article  CAS  PubMed  Google Scholar 

  • Dikshit R, Tallapragada P (2016) Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by Monascus sanguineus. J Food Drug Anal 24(2):433–440. https://doi.org/10.1016/j.jfda.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Endo A (1979) Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32(8):852–854. https://doi.org/10.7164/antibiotics.32.852

    Article  CAS  PubMed  Google Scholar 

  • Jirasatid S (2013) Statistical optimization for monacolin K and yellow pigment production and citrinin reduction by Monascus purpureus in solid-state fermentation. J Microbiol Biotechnol 23(3):364–374. https://doi.org/10.4014/jmb.1206.06068

    Article  CAS  PubMed  Google Scholar 

  • Jo D, Choe D, Nam K, Shin CS (2014) Biological evaluation of novel derivatives of the orange pigments from Monascus sp. as inhibitors of melanogenesis. Biotechnol Lett 36(8):1605–1613. https://doi.org/10.1007/s10529-014-1518-1

    Article  CAS  PubMed  Google Scholar 

  • Jůzlová P, Martínková L, Křen V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16(3):163–170. https://doi.org/10.1007/bf01569999

    Article  Google Scholar 

  • Lee CL, Chen WP, Wang JJ, Pan TM (2007) A simple and rapid approach for removing citrinin while retaining monacolin K in red Mold Rice. J Agric Food Chem 55(26):11101–11108

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Lee JH, Lee I (2013) Strain improvement by overexpression of the laeA gene in Monascus pilosus for the production of monascus-fermented rice. J Microbiol Biotechnol 23(7):959–965

    Article  CAS  PubMed  Google Scholar 

  • Lee CL, Wen JY, Hsu YW, Pan TM (2016) The blood lipid regulation of Monascus-produced monascin and ankaflavin via the suppression of low-density lipoprotein cholesterol assembly and stimulation of apolipoprotein A1 expression in the liver. J Microbiol Immunol 51:27–37

    Google Scholar 

  • Lin CP, Lin YL, Huang PH, Tsai HS, Chen YH (2011) Inhibition of endothelial adhesion molecule expression by Monascus purpureus-fermented rice metabolites, monacolin K, ankaflavin, and monascin. J Sci Food Agric 91(10):1751–1758

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Wang C, Li Z, Wu H, Chen M (2017) Effect of temperature-shift and temperature-constant cultivation on the monacolin K biosynthetic gene cluster expression in Monascus sp. Food Technol Biotechnol 55(1):40–47. https://doi.org/10.17113/ftb.55.01.17.4729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Wu S, Li Z, Ren Z, Chen M, Wang C (2018) High expression level of mok E enhances the production of monacolin K in Monascus. Food Biotechnol 32(1):35–46

    Article  CAS  Google Scholar 

  • Liu Q, Cai L, Shao Y, Zhou Y, Li M, Wang X, Chen F (2016) Inactivation of the global regulator LaeA in Monascus ruber results in a species-dependent response in sporulation and secondary metabolism. Fungal Biol 120(3):297–305

    Article  CAS  PubMed  Google Scholar 

  • MohanKumari HP, Dhale MA, Govindaswamy V (2012) Optimization of monacolin K production by Monascus purpureus MTTC 410 in submerged fermentation. Int J Food Eng 8:1420–1423. https://doi.org/10.1515/1556-3758.1420

    Article  CAS  Google Scholar 

  • Nezami N, Safa J, Salari B, Ghorashi S, Khosraviani K, Davarifarid S, Hashemiaghdam Y, Nargabad ON, Tabrizi JS (2012) Effect of lovastatin therapy and withdrawal on serum uric acid level in people with type 2 diabetic nephropathy. Nucleosides Nucleotides Nucleic Acids 31(4):353–363

    Article  CAS  PubMed  Google Scholar 

  • Panda BP, Javed S, Ali M (2010) Optimization of fermentation parameters for higher lovastatin production in red mold rice through co-culture of Monascus purpureus and Monascus ruber. Food Bioprocess Technol 3(3):373–378

    Article  CAS  Google Scholar 

  • Priatni S, Damayanti S, Saraswaty V, Ratnaningrum D, Singgih M (2014) The utilization of solid substrates on Monascus fermentation for anticholesterol agent production. Procedia Chem 9:34–39

    Article  CAS  Google Scholar 

  • Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2-DDCt method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinf Biomath 3:71–85

    Google Scholar 

  • Sakai K, Kinoshita H, Nihira T (2009) Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus. Biotechnol Lett 31(12):1911–1916. https://doi.org/10.1007/s10529-009-0093-3

    Article  CAS  PubMed  Google Scholar 

  • Su YC, Wang JJ, Lin TT, Pan TM (2003) Production of the secondary metabolites gamma-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Blot 30(1):41–46

    Article  CAS  Google Scholar 

  • Tsukahara M, Shinzato N, Tamaki Y, Namihira T, Matsui T (2009) Red yeast rice fermentation by selected Monascus sp. with deep-red color, lovastatin production but no citrinin, and effect of temperature-shift cultivation on lovastatin production. Appl Biochem Biotechnol 158(2):476–482. https://doi.org/10.1007/s12010-009-8553-8

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2003) Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Blot 30(11):669–676

    Article  CAS  Google Scholar 

  • Wang C, Chen D, Chen M, Wang Y, Li Z, Li F (2015) Stimulatory effects of blue light on the growth, monascin and ankaflavin production in Monascus. Biotechnol Lett 37(5):1043–1048. https://doi.org/10.1007/s10529-014-1763-3

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhang H, Xie Y, Ma S, Liu H, Luo Y (2013) Optimization of fermentation conditions for higher monacolin K production by Monascus purpureus. Adv Mater Res 781:1397–1402

    Article  CAS  Google Scholar 

  • Zhang BB, Lu LP, Xu GR (2015) Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into monacolin K by Monascus purpureus 9901: a mechanistic study. J Biotechnol 206:60–65

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liang J, Yang L, Chai S, Zhang C, Sun B, Wang C (2017a) Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus. AMB Express 7(1):22. https://doi.org/10.1186/s13568-016-0311-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liang J, Yang L, Sun B, Wang C (2017b) De NovoRNA sequencing and transcriptome analysis of Monascus purpureus and analysis of key genes involved in monacolin K biosynthesis. PLoS One 12(1):e0170149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liang J, Zhang A, Hao S, Zhang H, Zhu Q, Sun B, Wang C (2019) Overexpression of monacolin K biosynthesis genes in the Monascus purpureus Azaphilone polyketide pathway. J Agric Food Chem 67:2563–2569. https://doi.org/10.1021/acs.jafc.8b05524

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Beijing Nova Program (Grant No. Z181100006218021), Beijing Natural Science Foundation (Grant No. KZ201810011015), Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan (Grant No. CIT&TCD201804023), National Natural Science Foundation of China (Grant No. 31301411, 31571801, and 31401669), National Key Research and Development Program (Grant No. 2016YFD0400802, 2016YFD0400502–02), the construct of innovation service ability—Science and technology achievement transformation—Upgrade project (Grant No. PXM 2016-014213-000034), Beijing Municipal Science and Technology Project (Grant No. Z171100002217019), and Beijing Excellent Talents Training Project (Grant No. 2016000020124G025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengtao Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Chai, S., Hao, S. et al. Effects of glutamic acid on the production of monacolin K in four high-yield monacolin K strains in Monascus. Appl Microbiol Biotechnol 103, 5301–5310 (2019). https://doi.org/10.1007/s00253-019-09752-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09752-9

Keywords

Navigation