Skip to main content
Log in

Enhancing l-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial l-malate production from renewable feedstock is a promising alternative to petroleum-based chemical synthesis. However, high l-malate production of Aspergillus oryzae was achieved to date using organic nitrogen, with inorganic nitrogen still unable to meet industrial applications. In the current study, we constructed a screening system and nitrogen supply strategy to improve l-malate production with ammonium sulphate [(NH4)2SO4] as the sole nitrogen source. First, we generated and identified a high-producing mutant FMME218-37, which stably boosted l-malate production from 30.73 to 78.12 g/L, using a combined screening system with morphological characteristics. Then, by analyzing the fermentation parameters and physiological characteristics, we further speculated the key factor was the unbalance of carbon and nitrogen absorption. Finally, the titer and productivity of l-malate was increased to 95.2 g/L and 0.57 g/(L h) by regulating the nitrogen supply module to balance carbon and nitrogen absorption, which represented the highest level in A. oryzae with (NH4)2SO4 as nitrogen source achieved to date. Moreover, our findings using a low-cost substrate may lead to building an economical cell factory of A. oryzae for l-malate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anglov T, Petersen IM, Kristiansen J (1999) Uncertainty of nitrogen determination by the Kjeldahl method. Accred Qual Assur 4(12):504–510

    Article  CAS  Google Scholar 

  • Battat E, Peleg Y, Bercovitz A, Rokem JS, Goldberg I (2010) Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng 37(11):1108–1116

    Article  Google Scholar 

  • Bork P, Sander C, Valencia A (1993) Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 2(1):31–40

    Article  CAS  Google Scholar 

  • Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotech 97(20):8903–8912

    Article  CAS  Google Scholar 

  • Chen XL, Wang Y, Dong X, Hu G, Liu L (2017) Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production. Appl Microbiol Biotech 101(10):4041–4052

    Article  CAS  Google Scholar 

  • Chen XL, Xu GQ, Xu N, Zou W, Zhu P, Liu LM, Chen J (2013) Metabolic engineering of Torulopsis glabrata for malate production. Metab Eng 19(5):10–16

    Article  CAS  Google Scholar 

  • Deng Y, Li S, Xu Q, Gao M, Huang H (2012) Production of fumaric acid by simultaneous saccharification and fermentation of starchy materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae. Bioresour Technol 107(3):363–367

    Article  CAS  Google Scholar 

  • Dong X, Chen X, Qian Y, Wang Y, Wang L, Qiao W, Liu L (2017) Metabolic engineering of Escherichia coli W3110 to produce L-malate. Biotechnol Bioeng 114(3):656–664

    Article  Google Scholar 

  • Dörsam S, Fesseler J, Gorte O, Hahn T, Zibek S, Syldatk C, Ochsenreither K (2017) Sustainable carbon sources for microbial organic acid production with filamentous fungi. Biotechnol Biofuels 10(1):242–254

    Article  Google Scholar 

  • Downes DJ, Davis MA, Kreutzberger SD, Taig BL, Todd RB (2013) Regulation of the NADP-glutamate dehydrogenase gene gdhA in Aspergillus nidulans by the Zn(II)2Cys6 transcription factor LeuB. Microbiology 159(12):2467–2480

    Article  CAS  Google Scholar 

  • Driouch H, Hänsch R, Wucherpfennig T, Krull R, Wittmann C (2012) Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles. Biotechnol Bioeng 109(2):462–471

    Article  CAS  Google Scholar 

  • Driouch H, Sommer B, Wittmann C (2010) Morphology engineering of Aspergillus niger for improved enzyme production. Biotechnol Bioeng 105(6):1058–1068

    CAS  PubMed  Google Scholar 

  • Du ZQ, Zhang Y, Qian ZG, Xiao H, Zhong JJ (2017) Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum. Biotechnol Bioeng 114(12):2794–2806

    Article  CAS  Google Scholar 

  • Engel CAR, Straathof AJJ, Zijlmans TW, Gulik WMV, Wielen LAMVD (2008) Fumaric acid production by fermentation. Appl Microbiol and Biotech 78(3):379–389

    Article  Google Scholar 

  • Gao C, Wang S, Hu G, Guo L, Chen X, Xu P, Liu L (2017) Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning. Biotechnol Bioeng 115(2–3):661–672

    PubMed  Google Scholar 

  • Gao D (2014) Microbial lipid production by oleaginous fungus Mortierella isabellina through morphology engineering. Biotechnol Bioeng 111(9):15–20

    Article  Google Scholar 

  • Goldberg I, Rokem JS, Pines O (2010) Organic acids: old metabolites, new themes. J Chem Technol Biot 81(10):1601–1611

    Article  Google Scholar 

  • Gu C, Wang G, Mai S, Wu P, Wu J, Wang G, Liu H, Zhang J (2017) ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Appl Microbiol Biotech 101(5):2189–2199

    Article  CAS  Google Scholar 

  • Khan I, Nazir K, Wang ZP, Liu GL, Chi ZM (2014) Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Appl Microbiol Biotech 98(4):1539–1546

    Article  CAS  Google Scholar 

  • Knuf C, Nookaew I, Brown SH, McCulloch M, Berry A, Nielsen J (2013) Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions. Appl Environ Microb 79(19):6050–6058

    Article  CAS  Google Scholar 

  • Knuf C, Nookaew I, Remmers I, Khoomrung S, Brown S, Berry A, Nielsen J (2014) Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotech 98(8):3517–3527

    Article  CAS  Google Scholar 

  • Kusnan MB, Berger MG, Fock HP (1987) The involvement of glutamine synthetase/glutamate synthase in ammonia assimilation by Aspergillus nidulans. J Gen Appl Microbiol 133(5):1235–1242

    CAS  Google Scholar 

  • Li X, Liu R, Li J, Chang M, Liu Y, Jin Q, Wang X (2015) Enhanced arachidonic acid production from Mortierella alpina combining atmospheric and room temperature plasma (ARTP) and diethyl sulfate treatments. Bioresour Technol 177(177C):134–140

    Article  CAS  Google Scholar 

  • Lin SY, Wang LY, Jones G, Trang H, Yin YG, Liu JB (2012) Optimized extraction of calcium malate from eggshell treated by PEF and an absorption assessment in vitro. Int J Biol Macromol 50(5):1327–1333

    Article  CAS  Google Scholar 

  • Liu J, Li J, Shin HD, Du G, Chen J, Liu L (2017a) Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch. J Biotechnol 262(5):40–46

    Article  CAS  Google Scholar 

  • Liu J, Xie Z, Shin HD, Li J, Du G, Chen J, Liu L (2017b) Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. J Biotechnol 253(2):1–9

    Article  CAS  Google Scholar 

  • Margelis S, D’Souza C, Small AJ, Hynes MJ, Adams TH, Davis MA (2001) Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans. J Bacteriol 183(20):5826–5833

    Article  CAS  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Mol Microbiol 61(1):17–32

    CAS  Google Scholar 

  • Muller MM, Kugler JH, Henkel M, Gerlitzki M, Hormann B, Pohnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids--next generation surfactants? J Biotechnol 162(4):366–380

    Article  Google Scholar 

  • Nakayama S, Tabata K, Oba T, Kusumoto K, Mitsuiki S, Kadokura T, Nakazato A (2012) Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28. J Biosci Bioeng 114(3):281–285

    Article  CAS  Google Scholar 

  • Ochsenreither K, Fischer C, Neumann A, Syldatk C (2014) Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863. Appl Microbiol Biotech 98(12):5449–5460

    Article  CAS  Google Scholar 

  • Papagianni M, Mattey M (2006) Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Microb Cell Factories 5(1):3–14

    Article  Google Scholar 

  • Peleg Y, Stieglitz B, Goldberg I (1989) Malic acid accumulation by Aspergillus flavus. Appl Microbiol Biotech 30(2):176–183

    Article  CAS  Google Scholar 

  • Schwartz H, Radler F (1988) Formation of l (−)malate by Saccharomyces cerevisiae during fermentation. Appl Microbiol Biotech 27(5–6):553–560

    Article  CAS  Google Scholar 

  • Stojkovič G, Plazl I, Žnidaršič-Plazl P (2011) L-Malic acid production within a microreactor with surface immobilised fumarase. Microfluid Nanofluid 10(3):627–635

    Article  Google Scholar 

  • Thakker C, Martínez I, Li W, San KY, Bennett GN (2015) Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biot 42(3):403–422

    Article  CAS  Google Scholar 

  • Veiter L, Rajamanickam V, Herwig C (2018) The filamentous fungal pellet—relationship between morphology and productivity. Appl Microbiol Biotech 102(7):1–10

    Article  CAS  Google Scholar 

  • Wang B, Han X, Bai Y, Lin Z, Qiu M, Nie X, Wang S, Zhang F, Zhuang Z, Yuan J (2017) Effects of nitrogen metabolism on growth and aflatoxin biosynthesis in Aspergillus flavus. J Hazard Mater 324(Pt B):691–702

    Article  CAS  Google Scholar 

  • Werpy TA, Holladay JE, White JF (2004) Top value added chemicals from biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Synthetic Fuels

  • West TP (2011) Malic acid production from thin stillage by Aspergillus species. Biotechnol Lett 33(12):2463–2467

    Article  CAS  Google Scholar 

  • Yasuhara T, Nokihara K (2001) High-throughput analysis of total nitrogen content that replaces the classic Kjeldahl method. J Agr Food Chem 49(10):4581–4590

    Article  CAS  Google Scholar 

  • Ye X, Honda K, Morimoto Y, Okano K, Ohtake H (2013) Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol 164(1):34–40

    Article  CAS  Google Scholar 

  • Zambanini T, Kleineberg W, Sarikaya E, Buescher JM, Meurer G, Wierckx N, Blank LM (2016a) Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations. Biotechnol Biofuels 9(1):135–144

    Article  Google Scholar 

  • Zambanini T, Sarikaya E, Kleineberg W, Buescher JM, Meurer G, Wierckx N, Blank LM (2016b) Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol Biofuels 9(1):67–75

    Article  Google Scholar 

  • Zambanini T, Tehrani HH, Geiser E, Sonntag CK, Buescher JM, Meurer G, Wierckx N, Blank LM (2017) Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production. Metab Eng Commun 4(C):12–21

    Article  Google Scholar 

  • Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JMA, van Dijken JP, Pronk JT, van Maris AJA (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microb 74(9):2766–2777

    Article  CAS  Google Scholar 

  • Zhang X, Wang X, Shanmugam KT, Ingram LO (2011) L-malate production by metabolically engineered Escherichia coli. Appl Environ Microb 77(2):427–434

    Article  CAS  Google Scholar 

  • Zhao B, Li Y, Li C, Yang H, Wang W (2018) Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Appl Microbiol Biotech 102(5):2351–2361

    Article  CAS  Google Scholar 

  • Zhe C, Wang ZP, Wang GY, Khan I, Chi ZM (2014) Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol 36(1):99–107

    Google Scholar 

  • Zhu X, Zhang W, Chen X, Wu H, Duan Y, Xu Z (2010) Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization. Biotechnol Bioeng 107(3):506–510

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (21676118, 21706095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Luo, Q., Zhou, J. et al. Enhancing l-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization. Appl Microbiol Biotechnol 102, 8739–8751 (2018). https://doi.org/10.1007/s00253-018-9272-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9272-2

Keywords

Navigation