Skip to main content
Log in

Thermoanaerobacter species differ in their potential to reduce organic acids to their corresponding alcohols

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The reduction of organic acids to their corresponding alcohols has been shown for some bacterial species within the Firmicutes super-phylum and a genetically modified strain of the hyperthermophilic archaeon Pyrococcus furiosus. In the latter strain, an aldehyde:ferredoxin oxidoreductase (AOR) catalyzed the reduction of a variety of organic acids to their corresponding aldehydes, as shown by the deletion of the corresponding aor gene. Here, we found that the genomes of a few thermophilic bacterial species within the genus Thermoanaerobacter which have been described to efficiently ferment sugars to ethanol harbor a copy of aor, while others do not. Specific AOR activity was only found in strains with aor, and the gene was highly expressed in Thermoanaerobacter sp. strain X514. The reduction of a variety of organic acids was observed for several Thermoanaerobacter sp.; however, strains with aor reduced, e.g., isobutyrate at much higher rates of up to 5.1 mM h−1 g−1. Organic acid reduction also led to increased growth rates in Thermoanaerobacter sp. strain X514 and in Thermoanaerobacter pseudethanolicus. Organic acid activation may proceed via acyl-CoA with subsequent NADH-dependent reduction by an aldehyde dehydrogenase (ALDH), or via direct reduction by AOR. Cell-free extracts of Thermoanaerobacter sp. strain X514 exhibited both enzyme activities at comparable rates. Therefore, the biochemistry of organic acid reduction to alcohols in Thermoanaerobacter sp. remains to be elucidated; however, relatively high specific activities and the correlation of AOR specific activities with alcohol production rates suggest a role for AOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

We would like to thank Michael W. W. Adams (University of Georgia, Athens, GA, USA) for providing Thermoanaerobacter sp. strain X514 and Volker Müller (Goethe University, Frankfurt/Main) for supporting the project.

Funding

This study was funded by a grant from Deutsche Forschungsgemeinschaft (DFG BA 5757/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Basen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hitschler, L., Kuntz, M., Langschied, F. et al. Thermoanaerobacter species differ in their potential to reduce organic acids to their corresponding alcohols. Appl Microbiol Biotechnol 102, 8465–8476 (2018). https://doi.org/10.1007/s00253-018-9210-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9210-3

Keywords

Navigation