Skip to main content
Log in

Crystal structure and iterative saturation mutagenesis of ChKRED20 for expanded catalytic scope

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

ChKRED20 is an efficient and robust anti-Prelog ketoreductase that can catalyze the reduction of ketones to chiral alcohols as pharmaceutical intermediates with great industrial potential. To overcome its limitation on the bioreduction of ortho-substituted acetophenone derivatives, the X-ray crystal structure of the apo-enzyme of ChKRED20 was determined at a resolution of 1.85 Å and applied to the molecular modeling and reshaping of the catalytic cavity via three rounds of iterative saturation mutagenesis together with alanine scanning and recombination. The mutant Mut3B was achieved with expanded catalytic scope that covered all the nine substrates tested as compared with two substrates for the wild type. It exhibited 13–20-fold elevated k cat/K m values relative to the wild type or to the first gain-of-activity mutant, while retaining excellent stereoselectivity toward seven of the substrates (98–> 99% ee). Another mutant 29G10 displayed complementary selectivity for eight of the ortho-substituted acetophenone derivatives, with six of them delivering excellent stereoselectivity (90–99% ee). Its k cat/K m value toward 1-(2-fluorophenyl)ethanone was 5.6-fold of the wild type. The application of Mut3B in elevated substrate concentrations of 50–100 g/l was demonstrated in 50-ml reactions, achieving 75–> 99% conversion and > 99% ee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo-Rocha CG, Hoebenreich S, Reetz MT (2014) Iterative saturation mutagenesis: a powerful approach to engineer proteins by systematically simulating Darwinian evolution. Methods Mol Bio 1179:103–128

    Article  Google Scholar 

  • Bailey S (1994) The CCP4 suite—programs for protein crystallography. Acta Crystallogr D 50:760–763

    Article  Google Scholar 

  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194

    Article  CAS  PubMed  Google Scholar 

  • Busing I, Hoffken HW, Breuer M, Wohlbrand L, Hauer B, Rabus R (2015) Molecular genetic and crystal structural analysis of 1-(4-hydroxyphenyl)-ethanol dehydrogenase from ‘Aromatoleum aromaticum’ EbN1. J Mol Microbiol Biotechnol 25(5):327–339

    Article  PubMed  Google Scholar 

  • Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21

    Article  CAS  PubMed  Google Scholar 

  • Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P (2012) CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput Biol 8(10):e1002708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Despina BJ, Kille S, Taglieber A, Reetz MT (2009) Directed evolution of an enantioselective enoate-reductase: testing the utility of iterative saturation mutagenesis. Adv Synth Catal 351(18):3287–3305

    Article  Google Scholar 

  • Duax WL, Huether R, Pletnev V, Umland TC, Weeks CM (2009) Divergent evolution of a Rossmann fold and identification of its oldest surviving ancestor. Int J Bioinform Res App 5:280–294

    Article  CAS  Google Scholar 

  • Dudzik A, Snoch W, Borowiecki P, Opalinska-Piskorz J, Witko M, Heider J, Szaleniec M (2015) Asymmetric reduction of ketones and beta-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum. Appl Microbiol Biotechnol 99(12):5055–5069

    Article  CAS  PubMed  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:116–118

    Article  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132

    Article  PubMed  Google Scholar 

  • Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277(28):25677–25684

    Article  CAS  PubMed  Google Scholar 

  • Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20(11):1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Gooding OW, Voladri R, Bautista A, Hopkins T, Huisman G, Jenne S, Ma S, Mundorff EC, Savile MM (2010) Development of a practical biocatalytic process for (R)-2-methylpentanol. Org Process Res Dev 14(1):119–126

    Article  CAS  Google Scholar 

  • Hollmann F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13(9):2285–2314

    Article  CAS  Google Scholar 

  • Holm L, Laakso LM (2016) DALI server update. Nucleic Acids Res 44(W1):W351–W355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman GW, Collier SJ (2013) On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol 17(2):284–292

    Article  CAS  PubMed  Google Scholar 

  • Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14(2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Hummel W (1997) New alcohol dehydrogenases for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 58:145–184

    CAS  PubMed  Google Scholar 

  • Jornvall H, Persson B, Krook M, Atrian S, Gonzalezduarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases reductases (SDR). Biochemistry 34(18):6003–6013

    Article  CAS  PubMed  Google Scholar 

  • Kille S, Acevedorocha CG, Parra LP, Zhang ZG, Opperman DJ, Reetz MT, Acevedo JP (2013) Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth Biol 2(2):83–92

    Article  CAS  PubMed  Google Scholar 

  • Lewis JC, Mantovani SM, Fu Y, Snow CD, Komor RS, Wong CH, Arnold FH (2010) Combinatorial alanine substitution enables rapid optimization of cytochrome P450(BM3) for selective hydroxylation of large substrates. Chembiochem 11(18):2502–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li AP, Ye LD, Yang XH, Yang CC, Gu JL, Yu HW (2016) Structure-guided stereoselectivity inversion of a short-chain dehydrogenase/reductase towards halogenated acetophenones. Chem Commun 52(37):6284–6287

    Article  CAS  Google Scholar 

  • Li C, Liu Y, Pei X-Q, Wu Z-L (2017a) Stereo-complementary bioreduction of saturated N-heterocyclic ketones. Process Biochem 56:90–97

  • Li M, Zhang ZJ, Kong XD, HL Y, Zhou J, Xu JH (2017b) Engineering Streptomyces coelicolor carbonyl reductase for efficient synthesis of atorvastatin precursor. Appl Environ Microbiol 83(12):e00603–e00617

    PubMed  Google Scholar 

  • Liang J, Mundorff E, Voladri R, Jenne S, Gilson L, Conway A, Krebber A, Wong J, Huisman G, Truesdell S, Lalonde J (2010) Highly enantioselective reduction of a small heterocyclic ketone: Biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol. Org Process Res Dev 14(1):188–192

    Article  CAS  Google Scholar 

  • Liu Y, Tang T-X, Pei X-Q, Zhang C, Wu Z-L (2014) Identification of ketone reductase ChKRED20 from the genome of Chryseobacterium sp. CA49 for highly efficient anti-Prelog reduction of 3,5-bis(trifluoromethyl)acetophenone. J Mol Catal B Enzym 102:1–8

    Article  CAS  Google Scholar 

  • Liu Y-C, Guo C, Liu Y, Wang H-B, Wu ZL (2017) Enzymatic cascades for the stereo-complementary epimerisation of in situ generated epoxy alcohols. Org Biomol Chem 15(12):2562–2568

  • Martins BM, Macedo-Ribeiro S, Bresser J, Buckel W, Messerschmidt A (2005) Structural basis for stereo-specific catalysis in NAD+-dependent (R)-2-hydroxyglutarate dehydrogenase from Acidaminococcus fermentans. FEBS J 272(1):269–281

    Article  CAS  PubMed  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 53:240–255

    Article  CAS  PubMed  Google Scholar 

  • Nealon CM, Musa MM, Patel JM, Phillips RS (2015) Controlling substrate specificity and stereospecificity of alcohol dehydrogenases. ACS Catal 5(4):2100–2114

    Article  CAS  Google Scholar 

  • Noey EL, Tibrewal N, Jimenez-Oses G, Osuna S, Park J, Bond CM, Cascio D, Liang J, Zhang XY, Huisman GW, Tang Y, Houk KN (2015) Origins of stereoselectivity in evolved ketoreductases. P Natl Acad Sci USA 112(51):E7065–E7072

    CAS  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Pennacchio A, Sannino V, Sorrentino G, Rossi M, Raia CA, Esposito L (2013) Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil. Appl Microbiol Biotechnol 97(9):3949–3964

    Article  CAS  PubMed  Google Scholar 

  • Prelog V (2009) Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl Chem 9(1):119–130

    Google Scholar 

  • Reetz MT, Prasad S, Carballeira JD, Gumulya Y, Bocola M (2010) Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: Rigorous comparison with traditional methods. J Am Chem Soc 132(26):9144–9152

    Article  CAS  PubMed  Google Scholar 

  • Schlieben NH, Niefind K, Muller J, Riebel B, Hummel W, Schomburg D (2005) Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 349(4):801–813

    Article  CAS  PubMed  Google Scholar 

  • Shang YP, Chen Q, Kong XD, Zhang YJ, Xu JH, Yu HL (2017) Efficient synthesis of (R)-2-chloro-1-(2,4-dichlorophenyl)ethanol with a ketoreductase from Scheffersomyces stipitis CBS 6045. Adv Synth Catal 359(3):426–431

    Article  CAS  Google Scholar 

  • Sun ZT, Lonsdale R, Ilie A, Li GY, Zhou JH, Reetz MT (2016) Catalytic asymmetric reduction of difficult-to-reduce ketones: triple-code saturation mutagenesis of an alcohol dehydrogenase. ACS Catal 6(3):1598–1605

    Article  CAS  Google Scholar 

  • Tang T-X, Liu Y, Wu Z-L (2014) Characterization of a robust anti-Prelog short-chain dehydrogenase/reductase ChKRED20 from Chryseobacterium sp. CA49. J Mol Catal B Enzym 105:82–88

    Article  CAS  Google Scholar 

  • Träff A, Bogár K, Warner M, Bäckvall J-E (2008) Highly efficient route for enantioselective preparation of chlorohydrins via dynamic kinetic resolution. Org Lett 10(21):4807–4810

    Article  PubMed  Google Scholar 

  • Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH (2011) Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor. Bioresour Technol 102(14):7023–7028

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Nie Y, Xu Y, Zhang R, Ko TP, Huang CH, Chan HC, Guo RT, Xiao R (2014) Unconserved substrate-binding sites direct the stereoselectivity of medium-chain alcohol dehydrogenase. Chem Commun 50(58):7770–7772

    Article  CAS  Google Scholar 

  • Weckbecker A, Hummel W (2006) Cloning, expression, and characterization of an (R)-specific alcohol dehydrogenase from Lactobacillus kefir. Biocatal Biotransform 24(5):380–389

    Article  CAS  Google Scholar 

  • Zhang D, Chen X, Chi J, Feng J, Wu Q, Zhu D (2015a) Semi-rational engineering a carbonyl reductase for the enantioselective reduction of β-amino ketones. ACS Catal 5(4):2452–2457

    Article  CAS  Google Scholar 

  • Zhang R, Xu Y, Xiao R (2015b) Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers. Biotechnol Adv 33(8):1671–1684

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Tang WL, Wang DIC, Li Z (2011) Concurrent oxidations with tandem biocatalysts in one pot: green, selective and clean oxidations of methylene groups to ketones. Chem Commun 47(11):3284–3286

    Article  CAS  Google Scholar 

  • Zhao F-J, Liu Y, Pei X-Q, Guo C, Wu Z-L (2017) Single mutations of ketoreductase ChKRED20 enhance the bioreductive production of (1S)-2-chloro-1-(3, 4-difluorophenyl) ethanol. Appl Microbiol Biotechnol 101(5):1945–1952

  • Zhao F-J, Pei X-Q, Ren Z-Q, Wu Z-L (2016) Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20. Appl Microbiol Biotechnol 100(8):3567–3575

  • Zheng YG, Yin HH, DF Y, Chen X, Tang XL, Zhang XJ, Xue YP, Wang YJ, Liu ZQ (2017) Recent advances in biotechnological applications of alcohol dehydrogenases. Appl Microbiol Biotechnol 101(3):987–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Shanghai Synchrotron Radiation Facilities (SSRF) and National Center for Protein Science Shanghai (NCPSS), China are gratefully acknowledged for the provision of synchrotron radiation facilities and efficient support.

Funding

This study was funded by the National Natural Science Foundation of China (21372216, 21572220, and 21708038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganggang Wang or Zhong-Liu Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 1188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, FJ., Jin, Y., Liu, Z. et al. Crystal structure and iterative saturation mutagenesis of ChKRED20 for expanded catalytic scope. Appl Microbiol Biotechnol 101, 8395–8404 (2017). https://doi.org/10.1007/s00253-017-8556-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8556-2

Keywords

Navigation