Skip to main content
Log in

Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh2 gene was heterologously overexpressed in Escherichia coli, and the resulting protein (SaADH2) was purified to homogeneity and both biochemically and structurally characterized. The crystal structure of the SaADH2 NADH-bound form reveals that the enzyme is a tetramer consisting of identical 27,024-Da subunits, each composed of 255 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 80 °C and a 30-min half-inactivation temperature of ∼88 °C. It also shows good tolerance to common organic solvents and a strict requirement for NAD(H) as the coenzyme. SaADH2 displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-ketoesters, but is poorly active on aliphatic, cyclic and aromatic alcohols, showing no activity on aldehydes. Interestingly, the enzyme catalyses the asymmetric reduction of benzil to (R)-benzoin with both excellent conversion (98 %) and optical purity (98 %) by way of an efficient in situ NADH-recycling system involving a second thermophilic ADH. The crystal structure of the binary complex SaADH2–NADH, determined at 1.75 Å resolution, reveals details of the active site providing hints on the structural basis of the enzyme enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  Google Scholar 

  • Aoyagi Y, Agata N, Shibata N, Horiguchi M, Williams RM (2000) Lipase TL-mediated kinetic resolution of benzoin: facile synthesis of (1R,2S)-erythro-2-amino-1,2-diphenylethanol. Tetrahedron Lett 41:10159–10162

    Article  CAS  Google Scholar 

  • Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed Engl 39:2226–2254

    Article  CAS  Google Scholar 

  • Ceccarelli C, Liang ZX, Strickler M, Prehna G, Goldstein BM, Klinman JP, Bahnson BJ (2004) Crystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from Bacillus stearothermophilus: insight into thermostability and cofactor binding. Biochemistry 43:5266–5277

    Article  CAS  Google Scholar 

  • Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999

    Article  CAS  Google Scholar 

  • Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677–25684

    Article  CAS  Google Scholar 

  • Fiorentino G, Cannio R, Rossi M, Bartolucci S (1998) Decreasing the stability and changing the substrate specificity of the Bacillus stearothermophilus alcohol dehydrogenase by single amino acid replacements. Protein Eng 11:925–930

    Article  CAS  Google Scholar 

  • Fontana A, De Filippis V, Polverino de Laureto P, Scaramella E, Zambonin M (1998) Rigidity of thermophilic enzymes. In: Ballestreros A, Plou FJ, Iborra JL, Halling PJ (eds) Stability and stabilization in biocatalysis, vol 15. Elsevier Sciences, Amsterdam, pp 277–294

    Google Scholar 

  • Friest JA, Maezato Y, Broussy S, Blum P, Berkowitz DB (2010) Use of a robust dehydrogenase from an archael hyperthermophile in asymmetric catalysis–dynamic reductive kinetic resolution entry into (S)-profens. J Am Chem Soc 132:5930–5931

    Article  CAS  Google Scholar 

  • Giordano A, Febbraio F, Russo C, Rossi M, Raia CA (2005) Evidence for co-operativity in coenzyme binding to tetrameric Sulfolobus solfataricus alcohol dehydrogenase and its structural basis: fluorescence, kinetic and structural studies of the wild-type enzyme and non-co-operative N249Y mutant. Biochem J 388:657–667

    Article  CAS  Google Scholar 

  • Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes. Appl Microbiol Biotechnol 76:237–248

    Article  CAS  Google Scholar 

  • Guagliardi A, Martino M, Iaccarino I, De Rosa M, Rossi M, Bartolucci S (1996) Purification and characterization of the alcohol dehydrogenase from a novel strain of Bacillus stearothermophilus growing at 70 °C. Int J Biochem Cell Biol 28:239–246

    Article  CAS  Google Scholar 

  • Guy JE, Isupov MN, Littlechild JA (2003) The structure of an alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix. J Mol Biol 331:1041–1051

    Article  CAS  Google Scholar 

  • Hoyos P, Sinisterra JV, Molinari F, Alcántara AR, Domínguez de María P (2010) Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones. Acc Chem Res 43:288–299

    Article  CAS  Google Scholar 

  • Huisman GW, Liang J, Krebber A (2010) Practical chiral alcohol manufacture using ketoreductases. Curr Opin Chem Biol 14:122–129

    Article  CAS  Google Scholar 

  • Hummel W (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol 17:487–492

    Article  CAS  Google Scholar 

  • Inoue K, Makino Y, Dairi T, Itoh N (2006) Gene cloning and expression of Leifsonia alcohol dehydrogenase (LSADH) involved in asymmetric hydrogen–transfer bioreduction to produce (R)-form chiral alcohols. Biosci Biotechnol Biochem 70:418–426

    Article  CAS  Google Scholar 

  • Jones JB, Beck JF (1976) Applications of biochemical systems in organic chemistry. In: Jones JB, Sih CJ, Perlman D (eds) Techniques of chemistry series, part I, vol 10. Wiley, New York, pp 248–401

    Google Scholar 

  • Jörnvall H (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: MDR and SDR gene and protein superfamilies. Cell Mol Life Sci 65:3873–3878

    Article  Google Scholar 

  • Kallberg Y, Oppermann U, Jörnvall H, Persson B (2002) Short-chain dehydrogenases/reductases (SDRs). Eur J Biochem 269:4409–4417

    Article  CAS  Google Scholar 

  • Kavanagh KL, Jörnvall H, Persson B, Oppermann U (2008) The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  CAS  Google Scholar 

  • Keinan E, Hafeli EK, Seth KK, Lamed R (1986) Thermostable enzymes in organic synthesis. 2. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. J Am Chem Soc 108:162–169

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(6817):241–246

    Article  CAS  Google Scholar 

  • Korkhin Y, Kalb(Gilboa) AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol 278:967–981

    Article  CAS  Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120–126

    Article  CAS  Google Scholar 

  • Laane C, Boeren S, Hilhorst R, Veeger C (1987) Optimization of biocatalysis in organic media. In: Laane C, Tramper J, Lilly MD (eds) Biocatalysis in organic media, vol 29. Elsevier, Amsterdam, pp 65–84

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Leatherbarrow RJ (2004) GraFit version 5.0.11. Erithacus Software Ltd, Horley

    Google Scholar 

  • Liang ZX, Lee T, Resing KA, Ahn NG, Klinman JP (2004) Thermal-activated protein mobility and its correlation with catalysis in thermophilic alcohol dehydrogenase. Proc Natl Acad Sci U S A 101:9556–9561

    Article  CAS  Google Scholar 

  • Lopes S, Gòmez-Zavaglia A, Lapinski L, Chattopadhyay N, Fausto R (2004) Matrix-isolation FTIR spectroscopy of benzil: probing the flexibility of the C–C torsional coordinate. J Phys Chem A 108:8256–8263

    Article  CAS  Google Scholar 

  • Machielsen R, Uria AR, Kengen SW, van der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol 72:233–238

    Article  CAS  Google Scholar 

  • Machielsen R, Leferink NG, Hendriks A, Brouns SJ, Hennemann HG, Daussmann T, van der Oost J (2008) Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S,5S)-hexanediol at moderate temperatures. Extremophiles 12:587–594

    Article  CAS  Google Scholar 

  • Maruyama R, Nishizawa M, Itoi Y, Ito S, Inoue M (2002) The enzymes with benzil reductase activity conserved from bacteria to mammals. J Biotechnol 94:157–169

    Article  CAS  Google Scholar 

  • Müller M, Wolberg M, Schubert T, Hummel W (2005) Enzyme-catalyzed regio- and enantioselective ketone reductions. Adv Biochem Eng Biotechnol 92:261–287

    Google Scholar 

  • Nie Y, Xu Y, Mu XQ, Wang HY, Yang M, Xiao R (2007) Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-prelog stereospecificity from Candida parapsilosis. Appl Environ Microbiol 73:3759–3764

    Article  CAS  Google Scholar 

  • Niefind K, Müller J, Riebel B, Hummel W, Schomburg D (2003) The crystal structure of R-specific alcohol dehydrogenase from Lactobacillus brevis suggests the structural basis of its metal dependency. J Mol Biol 327:317–328

    Article  CAS  Google Scholar 

  • Pawelka Z, Koll A, Zeegers-Huyskens Th (2001) Solvent effect on conformation of benzil. J Mol Struct 597:57–66

    Article  CAS  Google Scholar 

  • Pennacchio A, Pucci B, Secundo F, La Cara F, Rossi M, Raia CA (2008) Purification and characterization of a novel recombinant highly enantioselective, short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus. Appl Environ Microbiol 74:3949–3958

    Article  CAS  Google Scholar 

  • Pennacchio A, Giordano A, Pucci B, Rossi M, Raia CA (2010a) Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius. Extremophiles 14:193–204

    Article  CAS  Google Scholar 

  • Pennacchio A, Giordano A, Esposito L, Langella E, Rossi M, Raia CA (2010b) Insight into the stereospecificity of short-chain Thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity. Protein Pept Lett 17:437–443

    Article  CAS  Google Scholar 

  • Pennacchio A, Giordano A, Rossi M, Raia CA (2011) Asymmetric reduction of α-keto esters with Thermus thermophilus NADH-dependent carbonyl reductase using glucose dehydrogenase and alcohol dehydrogenase for cofactor regeneration. Eur J Org Chem 23:4361–4366

    Article  Google Scholar 

  • Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, Duarte RG, Jörnvall H, Kavanagh KL, Kedishvili N, Kisiela M, Maser E, Mindnich R, Orchard S, Penning TM, Thornton JM, Adamski J, Oppermann U (2009) The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem Biol Interact 178:94–98

    Article  CAS  Google Scholar 

  • Radianingtyas H, Wright PC (2003) Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiol Rev 27:593–616

    Article  CAS  Google Scholar 

  • Raia CA, Giordano A, Rossi M (2001) Alcohol dehydrogenase from Sulfolobus solfataricus. Methods Enzymol 331:176–195

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Schlieben NH, Niefind K, Muller J, Riebel B, Hummel W, Schomburg D (2005) Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 349:801–813

    Article  CAS  Google Scholar 

  • Tanaka T, Kawase M, Tani S (2004) Alpha-hydroxyketones as inhibitors of urease. Bioorg Med Chem 12:501–505

    Article  CAS  Google Scholar 

  • van der Oost J, Voorhorst WG, Kengen SW, Geerling AC, Wittenhorst V, Gueguen Y, de Vos WM (2001) Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 268:3062–3068

    Article  Google Scholar 

  • Wildemann H, Dünkelmann P, Müller M, Schmidt B (2003) A short olefin metathesis-based route to enantiomerically pure arylated dihydropyrans and alpha, beta-unsaturated delta-valero lactones. J Org Chem 68:799–804

    Article  CAS  Google Scholar 

  • Zhu D, Malik HT, Hua L (2006) Asymmetric ketone reduction by a hyperthermophilic alcohol dehydrogenase. The substrate specificity, enantioselectivity and tolerance of organic solvents. Tetrahedron-Asymmetry 17:3010–3014

    Article  CAS  Google Scholar 

  • Zhu D, Hyatt BA, Hua L (2009) Enzymatic hydrogen transfer reduction of α-chloro aromatic ketones catalyzed by a hyperthermophilic alcohol dehydrogenase. J Mol Catal B: Enzym 56:272–276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by FIRB (Fondo per gli Investimenti della Ricerca di Base) RBNE034XSW and by the ASI project MoMa n. 1/014/06/0.

Atomic coordinates as well as structure factors have been deposited within the PDB under the accession code 4FN4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angela Pennacchio or Luciana Esposito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1078 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennacchio, A., Sannino, V., Sorrentino, G. et al. Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius highly enantioselective on diaryl diketone benzil. Appl Microbiol Biotechnol 97, 3949–3964 (2013). https://doi.org/10.1007/s00253-012-4273-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4273-z

Keywords

Navigation