Skip to main content
Log in

Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Erucic acid (cis-docosa-13-enoic acid, C22:1∆13) and nervonic acid (cis-tetracosa-15-enoic acid, C24:1 ∆15) are important renewable feedstocks in plastic, cosmetic, nylon, and lubricant industries. Furthermore, nervonic acid is also applied to the treatment of some neurological diseases. However, the production of these two very long-chain fatty acids (VLCFA) is very limited as both are not present in the main vegetable oils (e.g., soybean, rapeseed, sunflower, and palm). Ectopic integration and heterologous expression of fatty acid elongases (3-ketoacyl-CoA synthases, KCS) from different plants in Rhodosporidium toruloides resulted in the de novo synthesis of erucic acid and nervonic acid in this oleaginous yeast. Increasing KCS gene copy number or the use of a push/pull strategy based on the expression of elongases with complementary substrate preferences increased significantly the amount of these two fatty acids in the microbial oils. Oil titers in 7-L bioreactors were above 50 g/L, and these two VLCFA represented 20–30% of the total fatty acids. This is the first time that microbial production of these types of oils is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrio JL (2017) Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng (accepted for publication). doi:10.1002/bit.26337

  • Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214

    Article  CAS  PubMed  Google Scholar 

  • Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90(4):1219–1227. doi:10.1007/s00253-011-3200-z

    Article  CAS  PubMed  Google Scholar 

  • Amminger GP, Schäfer MR, Klier CM, Slavik JM, Holzer I, Holub M, Goldstone S, Whitford TJ, McGorry PD, Berk M (2012) Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol Psychiatry 17:1150–1152

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Nicaid JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90(4):1193–1206. doi:10.1007/s00253-011-3212-8

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Clemente TE, Damude HG, Kinney AJ (2009) Modifying vegetable oils for food and non-food purposes. In: Vollmann J, Rajcan I (eds) Oil crops, Handbook of Plant Breeding, 4. Springer Science+Business Media, LLC, pp 31–56

  • Campoy S, Gibert J, Lara A, Suarez B, Velasco J, Adrio JL (2014) Production of microbial oils WO2014198988

  • Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P (2011) Replacing fossil oil with fresh oil-with what and for what? Eur J Lipid Sci Technol 113(7):812–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillet S, Adrio JL (2016) Microbial production of fatty alcohols. World J Microbiol Biotechnol 32:152

    Article  PubMed  Google Scholar 

  • Fillet S, Gibert J, Suarez B, Lara A, Ronchel C, Adrio JL (2015) Fatty alcohols production by oleaginous yeast. J Ind Microbiol Biotechnol 42:1463–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahnevati M, Jaworski JG (2002) Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA-synthase. Eur J Biochem 269:3531–3539

    Article  Google Scholar 

  • Guo Y, Mietkiewska E, Francis T, Katavic V, Brost JM, Giblin M, Barton DL, Taylor DC (2009) Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Mol Biol 69:565–675

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lühs W, Sonntag K, Zähringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M (2001) Functional characterization of Beta-Ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol 46:229–239

    Article  CAS  PubMed  Google Scholar 

  • Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci 210:93–107

    Article  CAS  PubMed  Google Scholar 

  • Huai D, Zhang Y, Zhang C, Cahoon EB, Zhou Y (2015) Combinatorial effects of fatty acid Elongase enzymes on Nervonic acid production in Camelina sativa. PLoS One 10:e0131755

    Article  PubMed  PubMed Central  Google Scholar 

  • Jadhav A, Katavic V, Marillia EF, Giblin EM, Barton DL, Kumar A, Sonntag C, Babic V, Keller WA, Taylor DC (2005) Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metab Eng 7:215–220

    Article  CAS  PubMed  Google Scholar 

  • James DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis fatty acid elongation 1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johns AM, Love J, Aves SJ (2016) Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides. Front Microbiol 7:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh CM, Liu Y, Moehninsi, Du M, Ji L (2014) Molecular characterization of KU70 and KU80 homologes and explotation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporidium toruloides. BMC Microbiol 14:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Kyle V, Schulte LR, Durret TP, Rezac ME, Vadlani PV (2016) Oleaginous yeast: a value-added platform for renewable oils. Crit Rev Biotechnol 36:942–955

    Article  Google Scholar 

  • Leonard AE, Pereira SL, Sprecher H, Huang YS (2004) Elongation of long-chain fatty acids. Prog Lipid Res 43:36–45

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Wang Y, Zhang S, Zhu Z, Zhou YJ, Yang F, Sun W, Wang X, Zhao ZK (2014) Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res 14(4):547–555

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Koh CM, Sun L, Haing MM, Du M, Peng N, Ji L (2013) Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 97(2):719–729

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yap SA, Koh CM, Ji L (2016) Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous yeast Rhodotorula (Rhodosporidium) yeast species. Microb Cell Factories 15(1):200

    Article  Google Scholar 

  • Liu H, Jiao X, Wang Y, Yang X, Sun W, Wang J, Zhang S, Zhao ZK (2017) Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. FEMS Yeast Res 17(2). doi:10.1093/femsyr/fox017

  • Marillia EF, Francis T, Falk KC, Smith M, Taylor DC (2014) Palliser's promise: Brassica carinata, an emerging western Canadian crop for delivery of new bio-industrial oil feedstocks. Biocatal Agric Biotechnol 3:65–74

    Google Scholar 

  • McKeon TA (2005) Genetic modification of seeds oil for industrial applications. In: Erhan SZ (ed) Industrial uses of vegetable oils, vol 1. AOCS Press, Champaing, pp 7–19

    Google Scholar 

  • Mietkiewska E, Giblin EM, Wang S, Barton DL, Dirpaul J, Brost JN, Katavic V, Taylor DC (2004) Seed-specific heterologous expression of a Nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiol 136:2665–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mietkiewska E, Brost JM, Giblin EM, Barton DL, Taylor DC (2007) Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet Plant Biotechnol J 5:636–645

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:101–111

    Article  Google Scholar 

  • Oh CS, Toke DA, Mandala S, Martin CE (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272:17376–17384

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM (2006) Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem 281:9018–9029

    Article  CAS  PubMed  Google Scholar 

  • Schneiter R, Tatzer V, Gogg G, Leitner E, Kohlwein SD (2000) Elo1p-dependent Carboxy-terminal elongation of C14:1Δ9 to C16:1Δ11 fatty acids in Saccharomyces cerevisiae. J Bacteriol 182:3655–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneiter R, Brügger B, Amann CM, Prestwich GD, Epand RF, Zellnig G, Wieland FT, Epand RM (2004) Identification and biophysical characterization of a very-long-chain-fatty-acid-substituted phosphatidylinositol in yeast subcellular membranes. Biochem J 381:941–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Pang H, Li M, Peng B, Guo H, Yan Q, Hang Y (2013) Evolutionary pattern of the FAE 1 gene in Brassicaceae and its correlation with the erucic acid trait. PLoS One 8(12):e83535

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Shimizu T, Ohtsuka Y, Yamashiro Y, Oshida K (2007) Early dietary treatments with Lorenzo’s oil and docosahexaenoic acid for neurological development in a case with Zellweger syndrome. Brain Dev 29:586–598

    Article  PubMed  Google Scholar 

  • Taylor DC, Francis T, Guo S, Brost JM, Katavic V, Mietkiewska E, Giblin EM, Lozinsky S, Hoffman T (2009) Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnol J 7:925–938

    Article  CAS  PubMed  Google Scholar 

  • Taylor DC, Falk KC, Palmer CD, Hammerlindj J, Babic V, Mietkiewska E, Jadhav A, Marillia EF, Francis T, Hoffman T, Giblin EM, Katavic V, Keller WA (2010) Brassica carinata - a new molecular farming platform for delivering bio-industrial oil feedstocks: case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels Bioprod Biorefin 4:538–561

    Article  CAS  Google Scholar 

  • Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255–270

    Article  CAS  PubMed  Google Scholar 

  • Toke DA, Martin CE (1996) Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J Biol Chem 271:18413–18422

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li R, Lu D, Ma S, Yan Y, Li W (2009) A quick isolation method for mutants with high lipid yield in oleaginous yeast. World J Microbiol Biotechnol 25:921–925

    Article  CAS  Google Scholar 

  • Wang Y, Lin X, Zhang S, Sun W, Ma S, Zhao Z (2016) Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides. Yeast 33:99–106

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Liu D (2017) Exploitation of genus Rhodosporidium for microbial lipid production. World J Microbiol Biotechnol 33:54. doi:10.1007/s11274-017-2225-6

    Article  PubMed  Google Scholar 

  • Xu P, Quiao K, Ahn WS, Stephanopoulos G (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad U S A 113:10848–10853

    Article  CAS  Google Scholar 

  • Zhang S, Ito M, Skerker JM, Arkin AP, Rao CV (2016a) Metabolic engineering of the oleaginous yeast Rhododporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl Microbiol Biotechnol 100:9393–9405

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV (2016b) Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 113:1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112. doi:10.1038/ncomms2112

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors also thank Dr. Santiago Gutierrez for generously providing the pUR5750 plasmid. This research has been partially supported by Corporación Tecnológica de Andalucía (CTA) under research project 16-890.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Adrio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillet, S., Ronchel, C., Callejo, C. et al. Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Appl Microbiol Biotechnol 101, 7271–7280 (2017). https://doi.org/10.1007/s00253-017-8461-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8461-8

Keywords

Navigation