Skip to main content
Log in

Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Nervonic acid is a Very Long-Chain Monounsaturated Fatty Acid (VLCMFA), 24:1 Δ15 (cis-tetracos-15-enoic acid) found in the seed oils of Lunaria annua, borage, hemp, Acer (Purpleblow maple) and Tropaeolum speciosum (Flame flower). However, of these, only the “money plant” (Lunaria annua L.) has been studied and grown sparingly for future development as a niche crop and the outlook has been disappointing. Therefore, our goal was to isolate and characterize strategic new genes for high nervonic acid production in Brassica oilseed crops. To this end, we have isolated a VLCMFA-utilizing 3-Keto-Acyl-CoA Synthase (KCS; fatty acid elongase; EC 2.3.1.86) gene from Lunaria annua and functionally expressed it in yeast, with the recombinant KCS protein able to catalyze the synthesis of several VLCMFAs, including nervonic acid. Seed-specific expression of the Lunaria KCS in Arabidopsis resulted in a 30-fold increase in nervonic acid proportions in seed oils, compared to the very low quantities found in the wild-type. Similar transgenic experiments using B. carinata as the host resulted in a 7–10 fold increase in seed oil nervonic acid proportions. KCS enzyme activity assays indicated that upon using 14C-22:1-CoA as substrate, the KCS activity from developing seeds of transgenic B. carinata was 20–30-fold higher than the low erucoyl-elongation activity exhibited by wild type control plants. There was a very good correlation between the Lun KCS transcript intensity and the resultant 22:1-CoA KCS activity in developing seed. The highest nervonic acid level in transgenic B. carinata expressing the Lunaria KCS reached 30%, compared to 2.8% in wild type plant. In addition, the erucic acid proportions in these transgenic lines were considerably lower than that found in native Lunaria oil. These results show the functional utility of the Lunaria KCS in engineering new sources of high nervonate/reduced erucic oils in the Brassicaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

20:1:

cis-Eicosa-11-enoic acid; 20:1Δ11

22:1:

Erucic acid; (cis-docosa-13-enoic acid); 22:1Δ13

24:1:

Nervonic acid; (cis-tetracos-15-enoic acid); 24:1Δ15

FAE:

Fatty acid elongase

FAME:

Fatty acid methyl ester

GC:

Gas chromatography

HEA:

High erucic acid

HPLC:

High performance liquid chromatography

KCS:

3-Keto-acyl-CoA synthase

Lun:

Lunaria

PCR:

Polymerase chain reaction

VLC(M)FA:

Very long-chain (mono-unsaturated) fatty acid

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Appelqvist LA (1976) Lipids in Cruciferae. In: Vaughan JG, Macleod AJ (eds) The biology and the chemistry of the Cruciferae. Academic Press, London, UK, pp 221–277

    Google Scholar 

  • Babic V, Datla RS, Scoles GJ, Keller WA (1998) Development of an efficient Agrobacterium-mediated transformation system for Brassica carinata. Plant Cell Rep 17:183–188. doi:10.1007/s002990050375

    Article  CAS  Google Scholar 

  • Baily L (1949) Manual of cultivated plants. Macmillan, New York, p 443

    Google Scholar 

  • Bettger W (2000) Apparent transfer efficiency of nervonic acid from diet to milk in dairy cows and the subsequent enrichment of nervonic acid in skim milk-based dairy products. Special Research Funds 2000. University of Guelph, ON, Canada

    Google Scholar 

  • Bettger WJ, McCorquodale ML, Blackadar CB (2001) The effect of a Tropaeolum speciosum oil supplement on the nervonic acid content of sphingomyelin in rat tissues. J Nutr Biochem 12:492–496. doi:10.1016/S0955-2863(01)00166-8

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Greenblatt IM, Dellaporta SL (1992) Molecular analysis of Ac transposition and DNA replication. Genetics 130:665–676

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Cook C, Barnett J, Coupland K, Sargent J (1998) Effects of feeding Lunaria oil rich in nervonic and erucic acids on the fatty acid compositions of sphingomyelins from erythrocytes, liver, and brain of the quaking mouse mutant. Lipids 33:993–1000. doi:10.1007/s11745-998-0297-4

    Article  PubMed  CAS  Google Scholar 

  • Coupland K (1996) Nervonic acid composition. PCT: WO 96/05740

  • Coupland K, Langley N (1991) Use of nervonic acid and long chain fatty acids for the treatment of demyelinating disorders. PCT: WO 91/07955

  • Coupland K, Yann R (2001) Nervonic acid derivatives, their preparation and use. PCT: CA2391953

  • Das S, Roscoe TJ, Delseny M, Srivastava PS, Lakshmikumaran M (2002) Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Sci 162:245–250. doi:10.1016/S0168-9452(01)00556-8

    Article  CAS  Google Scholar 

  • Ghanevati M, Jaworski JG (2001) Active-site residues of a plant membrane-bound fatty acid elongase β-ketoacyl-CoA synthase, FAE1 KCS. Biochim Biophys Acta 1530:77–85

    PubMed  CAS  Google Scholar 

  • Golovko MY, Murphy EJ (2006) Uptake and metabolism of plasma-derived erucic acid by rat brain. J Lipid Res 47:1289–1297. doi:10.1194/jlr.M600029-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lühs W, Sonntag K, Zähringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M (2001) Functional characterization of β-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol 46:229–239. doi:10.1023/A:1010665121980

    Article  PubMed  CAS  Google Scholar 

  • Hellgren L (2001) Occurrence of bioactive sphingolipids in meat and fish products. Eur J Lipid Sci Technol 103:661–667. doi:10.1002/1438-9312(200110)103:10<661::AID-EJLT661>3.0.CO;2-8

    Article  CAS  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase-A database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374:166

    Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J-T, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis thaliana cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874. doi:10.1104/pp.126.2.861

    Article  PubMed  CAS  Google Scholar 

  • Kanrar S, Venkateswari J, Dureja P, Kirti PB, Chopra VL (2005) Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea fatty acid elongation1 (BjFAE1) gene. Plant Cell Rep 25:148–155. doi:10.1007/s00299-005-0068-3

    Article  PubMed  CAS  Google Scholar 

  • Katavic V, Friesen W, Barton DL, Gossen KK, Giblin EM, Luciw T, An J, Zou J-T, MacKenzie SL, Keller WA, Males D, Taylor DC (2001) Improving erucic acid content in rapeseed through biotechnology: what can the Arabidopsis FAE1 and the yeast SLC1-1 genes contribute? Crop Sci 41:739–747

    CAS  Google Scholar 

  • Katavic V, Mietkiewska E, Barton DL, Giblin EM, Reed DW, Taylor DC (2002) Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elonagase1 by a single amino acid substitution. Eur J Biochem 269:5625–5631. doi:10.1046/j.1432-1033.2002.03270.x

    Article  PubMed  CAS  Google Scholar 

  • Katavic V, Barton DL, Giblin EM, Reed DW, Kumar A, Taylor DC (2004) Gaining insight into the role of serine 282 in B. napus FAE1 condensing enzyme. FEBS Lett 562:118–124. doi:10.1016/S0014-5793(04)00198-X

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396. doi:10.1007/BF00331014

    Article  CAS  Google Scholar 

  • Lange W, Marvin HJP (2000) Vegetable oils with specific fatty acids (VOSFA) agricultural and industrial development of novel oilseed crops-final summary report, contract no AIR-CT93-1817

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    Article  PubMed  CAS  Google Scholar 

  • Martínez M, Mougan I (1998) Fatty acid composition of human brain phospholipids during normal development. J Neurochem 71:2528–2533

    Article  PubMed  Google Scholar 

  • Mastebroek HD, Marvin HJP (2000) Breeding prospects of Lunaria annua L. Ind Crops Prod 11:139–143. doi:10.1016/S0926-6690(99)00056-4

    Article  Google Scholar 

  • Meier zu Beerentrup H, Röbbelen G (1987) Screening for European production of oilseeds with unusual fatty acids. Angew Botanik 61:287–303

    CAS  Google Scholar 

  • Merrill AH Jr, Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, Schroeder JJ, Riley RT, Voss KA, Wang E (1997) Sphingolipids-the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142:208–225. doi:10.1006/taap.1996.8029

    Article  PubMed  CAS  Google Scholar 

  • Mietkiewska E, Giblin EM, Wang S, Barton DL, Dirpaul J, Brost JM, Katavic V, Taylor DC (2004) Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiol 136:2665–2675. doi:10.1104/pp.104.046839

    Article  PubMed  CAS  Google Scholar 

  • Mietkiewska E, Brost JM, Giblin EM, Barton DL, Taylor DC (2007a) A Teesdalia nudicaulis FAE1 complements the fae1 mutation in transgenic Arabidopsis thaliana plants. Plant Sci 173:198–205. doi:10.1016/j.plantsci.2007.05.001

    Article  CAS  Google Scholar 

  • Mietkiewska E, Brost JM, Giblin EM, Barton DL, Taylor DC (2007b) Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet. Plant Biotechnol J 5:636–645. doi:10.1111/j.1467-7652.2007.00268.x

    Article  PubMed  CAS  Google Scholar 

  • Mietkiewska E, Hoffman TL, Brost JM, Giblin EM, Barton DL, Francis T, Zhang Y, Taylor DC (2008) Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of Crambe abyssinica FAE gene causes a dramatic increase in the level of erucic acid in transgenic Brassica carinata seeds. Mol Breed 22:619–627

    Article  CAS  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:101–111. doi:10.1046/j.1365-313X.1997.12010121.x

    Article  Google Scholar 

  • Moon H, Smith MA, Kunst L (2001) A condensing enzyme from the seeds of Lequerella fendleri that specifically elongates hydroxyl fatty acids. Plant Physiol 127:1635–1643. doi:10.1104/pp.127.4.1635

    Article  PubMed  CAS  Google Scholar 

  • Nicholls FH (1996) New crops in the UK: from concept to bottom line profits. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria, VA, pp 21–26

    Google Scholar 

  • Persson B, Argos P (1994) Prediction of transmembrane segments in proteins utilizing multiple sequence alignments. J Mol Biol 237:182–192. doi:10.1006/jmbi.1994.1220

    Article  PubMed  CAS  Google Scholar 

  • Poulos A (1995) Very long chain fatty acids in higher animals—a review. Lipids 30:1–14. doi:10.1007/BF02537036

    Article  PubMed  CAS  Google Scholar 

  • Puyaubert J, Diercyk W, Costaglioli P, Chevalier S, Breton A, Lessire R (2005) Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and low erucic Brasica napus during seed development. Biochim Biophys Acta 168:152–163

    Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning a laboratory manual, vol 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Woodbury, NY

    Google Scholar 

  • Sargent JR, Coupland K, Wilson R (1994) Nervonic acid and demyelinating disease. Med Hypotheses 42:237–242. doi:10.1016/0306-9877(94)90122-8

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Shimizu T, Ohtsuka Y, Yamashiro Y, Oshida K (2007) Early dietary treatments with Lorenzo’s oil and docosahexaenoic acid for neurological development in a case with Zellweger syndrome. Brain Dev 29:586–589. doi:10.1016/j.braindev.2007.02.005

    Article  PubMed  Google Scholar 

  • Tang J, Scarth R, Fristensky B (2003) Effects of genomic position and copy number of Acyl-ACP thioesterase transgenes on the level of the target fatty acids in Brassica napus L. Mol Breed 12:71–81. doi:10.1023/A:1025495000264

    Article  CAS  Google Scholar 

  • Taylor DC, Weber N, Hogge LR, Underhill EW (1990) A Simple Enzymatic Method for the Preparation of Radiolabeled Erucoyl-CoA and Other Long-Chain Fatty Acyl-CoAs and Their Characterization by Mass Spectrometry. Anal Biochem 184:311–316. doi:10.1016/0003-2697(90)90686-4

    Article  PubMed  CAS  Google Scholar 

  • Taylor DC, Katavic V, Zou J-T, MacKenzie SL, Keller WA, An J, Friesen W, Barton DL, Gossen KK, Giblin EM, Ge Y, Dauk M, Luciw T, Males D (2001) Field-testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol Breed 8:317–322. doi:10.1023/A:1015234401080

    Google Scholar 

  • Taylor DC, Guo Y, Katavic V, Mietkiewska E, Francis T, Bettger W (2008) New seed oils for improved human and animal health and as industrial feedstocks: genetic manipulation of the Brassicaceae to produce oils enriched in nervonic acid. In: Krishnan HB (ed) Modification of seed composition to promote health and nutrition. American Society of Agronomy and Crop Science Society of America (in Press)

  • Van Soest LJM (1994) Alternative crop developments in the Netherlands. Alternative oilseed and fibre crops for cool and wet regions of Europe. In: Proceedings of a workshop, Wageningen, The Netherlands, 7–8 April 1994, pp 14–20

  • Voelker TA, Hayes TR, Cranmer AM, Turner JC, Davies HM (1996) Genetic engineering of a quantitative trait: Metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant J 9:229–241. doi:10.1046/j.1365-313X.1996.09020229.x

    Article  CAS  Google Scholar 

  • Wang C-S, Vodkin LO (1994) Extraction of RNA from tissues containing high levels of procyanidins that bind RNA. Plant Mol Biol Rep 12(2):132–145. doi:10.1007/BF02668374

    Article  CAS  Google Scholar 

  • Zou J-T, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923. doi:10.1105/tpc.9.6.909

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Panchuk, D. Schwab and Dr. L. Pelcher for DNA sequencing and primer synthesis and Dr. J. Balsevich and Dr. S. R. Abrams for critical reviews of this manuscript. This work was partially supported by a Grant No. 20040417 from the Saskatchewan Agriculture Development Fund, and by the NRC Crops for Enhanced Human Health Program. This National Research Council of Canada Publication No. 50120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Mietkiewska, E., Francis, T. et al. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene. Plant Mol Biol 69, 565–575 (2009). https://doi.org/10.1007/s11103-008-9439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9439-9

Keywords

Navigation