Skip to main content

Advertisement

Log in

Production of ω3 fatty acids in marine cyanobacterium Synechococcus sp. strain NKBG 15041c via genetic engineering

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Omega-3 fatty acids (ω3 FAs) have attracted attention because they have various health benefits for humans. Fish oils are currently major sources of ω3 FAs, but a sustainable supply of ω3 FAs based on fish oils is problematic because of the increasing demand. In this study, the production potential of a genetically engineered marine cyanobacterium, Synechococcus sp. strain NKBG 15041c, was examined as an alternative source of ω3 FAs. A change in fatty acid composition of this cyanobacterium was successfully induced by the expression of a heterologous Δ6-desaturase, and the transformants synthesized stearidonic acid, which the wild type cannot produce. As a result of optimization of culture conditions, maximal contents of stearidonic acid and total ω3 FAs reached 12.2 ± 2.4 and 118.1 ± 3.5 mg/g, respectively. The maximal ω3 FA productivity was 4.6 ± 0.7 mg/(L⋅day). These are the highest values of the contents of stearidonic acid and ω3 FAs in genetically engineered cyanobacteria reported thus far. Therefore, genetically engineered Synechococcus sp. strain NKBG 15041c may be a promising sustainable source of ω3 fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atalah E, Cruz CH, Izquierdo M, Rosenlund G, Caballero M, Valencia A, Robaina L (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270(1):178–185

    Article  CAS  Google Scholar 

  • Barcelo-Coblijn G, Murphy EJ (2009) Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48(6):355–374. doi:10.1016/j.plipres.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  • Brenna JT, Salem N Jr, Sinclair AJ, Cunnane SC (2009) Alpha-linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids 80(2–3):85–91. doi:10.1016/j.plefa.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  • Cerón Garcí M, Fernández Sevilla J, Acien Fernandez F, Molina Grima E, García Camacho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12(3):239–248

    Article  Google Scholar 

  • Chen G, Qu S, Wang Q, Bian F, Peng Z, Zhang Y, Ge H, Yu J, Xuan N, Bi Y, He Q (2014) Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803. Biotechnol Biofuels 7(1):32 doi:10.1186/1754-6834-7-32

  • Cohen Z, Ratledge C (2010) Single cell oils: microbial and algal oils. Elsevier

  • Deckelbaum RJ, Torrejon C (2012) The omega-3 fatty acid nutritional landscape: health benefits and sources. J Nutr 142(3):587S–591S. doi:10.3945/jn.111.148080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, He Q, Peng Z, Yu J, Bian F, Li Y, Bi Y (2015) Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes. Chin J Oceanol Limnol 34(4):772–780. doi:10.1007/s00343-016-4369-x

    Article  Google Scholar 

  • Ganuza E, Benítez-Santana T, Atalah E, Vega-Orellana O, Ganga R, Izquierdo M (2008) Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture 277(1):109–116

    Article  CAS  Google Scholar 

  • Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro EM, Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115(2):551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci U S A 89(20):9959–9963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, Moran-Salvador E, Titos E, Martinez-Clemente M, Lopez-Parra M, Arroyo V, Claria J (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 23(6):1946–1957. doi:10.1096/fj.08-125674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes AC, Amaro HM, Barbosa CR, Pereira RD, Malcata FX (2011a) Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int 44(9):2721–2729

    Article  CAS  Google Scholar 

  • Guedes AC, Amaro HM, Barbosa CR, Pereira RD, Malcata FX (2011b) Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Res Int 44(9):2721–2729

    Article  CAS  Google Scholar 

  • Haimeur A, Ulmann L, Mimouni V, Gueno F, Pineau-Vincent F, Meskini N, Tremblin G (2012) The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats. Lipids Health Dis 11:147. doi:10.1186/1476-511x-11-147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heydarizadeh P, Poirier I, Loizeau D, Ulmann L, Mimouni V, Schoefs B, Bertrand M (2013) Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs 11(9):3425–3471. doi:10.3390/md11093425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13(4):793–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon CN (1972) Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol 109(2):827–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Mikrobiol 83(3):216–236

    Article  CAS  PubMed  Google Scholar 

  • Kis M, Zsiros O, Farkas T, Wada H, Nagy F, Gombos Z (1998) Light-induced expression of fatty acid desaturase genes. Proc Natl Acad Sci U S A 95(8):4209–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremmyda L-S, Vlachava M, Noakes PS, Diaper ND, Miles EA, Calder PC (2009) Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review. Clin Rev Allergy Immunol 41(1):36–66. doi:10.1007/s12016-009-8186-2

    Article  Google Scholar 

  • Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79(6):935–945

    CAS  PubMed  Google Scholar 

  • Li-Beisson Y, Beisson F, Riekhof W (2015) Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J 82(3):504–522. doi:10.1111/tpj.12787

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Maeda Y, Sunaga Y, Muto M, Matsumoto M, Yoshino T, Tanaka T (2013) Biosynthesis of polyunsaturated fatty acids in the oleaginous marine diatom Fistulifera sp strain JPCC DA0580. Mar Drugs 11(12):5008–5023. doi:10.3390/md11125008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Sheng J, Curtiss R 3rd (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904. doi:10.1073/pnas.1103014108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Los D, Mironov K (2015) Modes of fatty acid desaturation in cyanobacteria: an update. Life 5(1):554–567. doi:10.3390/life5010554

    Article  PubMed  PubMed Central  Google Scholar 

  • Los DA, Mironov KS, Allakhverdiev SI (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116(2–3):489–509. doi:10.1007/s11120-013-9823-4

    Article  CAS  PubMed  Google Scholar 

  • Ludwig M, Bryant DA (2011) Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by next-gen (SOLiD) sequencing of cDNA. Front Microbiol 2:41 doi:10.3389/fmicb.2011.00041

  • Maeda Y, Ito Y, Honda T, Yoshino T, Tanaka T (2014) Inducible expression system for the marine cyanobacterium Synechococcus sp. strain NKBG 15041c. Int J Hydrog Energy 39(33):19382–19388

    Article  CAS  Google Scholar 

  • Miller MR, Nichols PD, Carter CG (2007) Replacement of fish oil with thraustochytrid Schizochytrium sp. L oil in Atlantic salmon parr (Salmo salar L) diets. Comp Biochem Physiol A Mol Integr Physiol 148(2):382–392

    Article  PubMed  Google Scholar 

  • Morowvat MH, Ghasemi Y (2016) Screening of some naturally isolated microalgal strains for polyunsaturated fatty acids production. Asian J Pharmaceut Res Health Care 8(4):122 doi:10.18311/ajprhc/2016/6113

  • Murata N, Wada H, Gombos Z (1992) Modes of fatty acid desaturation in cyanobacteria. Plant Cell Physiol 33(7):933–941

    CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Yamamoto H, Hayashi H, Murata N (2004) Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43(35):11321–11330. doi:10.1021/bi036178q

    Article  CAS  PubMed  Google Scholar 

  • Pakrasi HB, Moon TS, Maranas CD, Immethun CM, Saha R, Berla BM (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4. doi:10.3389/fmicb.2013.00246

  • Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2(3):136–149

    Article  PubMed  Google Scholar 

  • Sakamoto T, Higashi S, Wada H, Murata N, Bryant DA (1997) Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002. FEMS Microbiol Lett 152(2):313–320

    Article  CAS  PubMed  Google Scholar 

  • Sarcina M, Murata N, Tobin MJ, Mullineaux CW (2003) Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: effect of fatty acid desaturation. FEBS Lett 553(3):295–298

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Murata N (1981) Studies on the temperature shift-induced desaturation of fatty acids in monogalactosyl diacylglycerol in the blue-green alga (cyanobacterium), Anabaena variabilis. Plant Cell Physiol 22(6):1043–1050

    CAS  Google Scholar 

  • Sode K, Tatara M, Hatano N, Matsunaga T (1994) Foreign gene-expression in marine cyanobacteria under pseudocontinuous culture. J Biotechnol 33(3):243-248 doi:Doi 10.1016/0168-1656(94)90072-8

  • Sode K, Tatara M, Takeyama H, Burgess JG, Matsunaga T (1992) Conjugative gene transfer in marine cyanobacteria: Synechococcus sp., Synechocystis sp. and Pseudanabaena sp. Appl Microbiol Biotechnol 37(3):369–373

    Article  CAS  PubMed  Google Scholar 

  • Su G, Jiao K, Li Z, Guo X, Chang J, Ndikubwimana T, Sun Y, Zeng X, Lu Y, Lin L (2016) Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess Biosyst Eng 39(7):1129–1136. doi:10.1007/s00449-016-1589-6

    Article  CAS  PubMed  Google Scholar 

  • Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Nutrition 19(3):213–228. doi:10.1016/s0899-9007(02)00855-9

    Article  CAS  PubMed  Google Scholar 

  • Tacon AG, Hasan MR, Metian M (2011) Demand and supply of feed ingredients for farmed fish and crustaceans: trends and prospects. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Turchini GM, Torstensen BE, Ng WK (2009) Fish oil replacement in finfish nutrition. Rev Aquac 1(1):10–57

    Article  Google Scholar 

  • Whelan J (2009) Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J Nutr 139(1):5–10. doi:10.3945/jn.108.094268

    Article  CAS  PubMed  Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57(2):419–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshino T, Honda T, Tanaka M, Tanaka T (2013) Draft genome sequence of marine cyanobacterium Synechococcus sp. strain NKBG15041c. Genome Announc 1(6):e00954-13-e00954-13 doi:10.1128/genomeA.00954-13

  • Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2014) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99(3):1521–1529. doi:10.1007/s00253-014-6286-2

    Article  PubMed  Google Scholar 

  • Yu R, Yamada A, Watanabe K, Yazawa K, Takeyama H, Matsunaga T, Kurane R (2000) Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 35(10):1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Zhu B-H, Tu C-C, Shi H-P, Yang G-P, Pan K-H (2017) Overexpression of endogenous delta-6 fatty acid desaturase gene enhances eicosapentaenoic acid accumulation in Phaeodactylum tricornutum. Process Biochem. doi:10.1016/j.procbio.2017.03.013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 1086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshino, T., Kakunaka, N., Liang, Y. et al. Production of ω3 fatty acids in marine cyanobacterium Synechococcus sp. strain NKBG 15041c via genetic engineering. Appl Microbiol Biotechnol 101, 6899–6905 (2017). https://doi.org/10.1007/s00253-017-8407-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8407-1

Keywords

Navigation