Skip to main content
Log in

DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cryptochromes (CRYs) belong to the photolyase/cryptochrome flavoprotein family, which is widely distributed in all kingdoms. A phylogenetic analysis indicated that three Cordyceps militaris proteins [i.e., cryptochrome DASH (CmCRY-DASH), (6-4) photolyase, and cyclobutane pyrimidine dimer (CPD) class I photolyase] belong to separate fungal photolyase/cryptochrome subfamilies. CmCRY-DASH consists of DNA photolyase and flavin adenine dinucleotide-binding domains, with RGG repeats in a C-terminal extension. Considerably, more carotenoids and cordycepin accumulated in the ΔCmcry-DASH strain than in the wild-type or ΔCmwc-1 strains, indicating an inhibitory role for CmCRY-DASH in these biosynthetic pathways. Fruiting body primordia could form in the ΔCmcry-DASH strain, but the fruiting bodies were unable to elongate normally, differently from the Cmwc-1 disruption strain, where primordium differentiation did not occur. Cmcry-DASH expression is induced by light in the wild-type strain, but not in the ΔCmwc-1 strain. CmCRY-DASH is also necessary for the expression of Cmwc-1, implying that Cmcry-DASH and Cmwc-1 exhibit interdependent expression. The Cmvvd expression levels in the wild-type and ΔCmcry-DASH strains increased considerably following irradiation, while Cmvvd expression in the ΔCmwc-1 strain was not induced by light. It is speculated that the photo adaptation may be faster in the Cmcry-DASH mutant based on Cmvvd transcript dynamics. These results provide new insights into the biological functions of fungal DASH CRYs. Furthermore, the DASH CRYs may regulate fruiting body development and secondary metabolism differently than WC-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bayram Ö, Biesemann C, Krappmann S, Galland P, Braus GH (2008) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19(8):3254–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayram Ö, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47(11):900–908

    Article  CAS  PubMed  Google Scholar 

  • Brudler R, Hitomi K, Daiyasu H, Toh H, Kucho K, Ishiura M, Kanehisa M, Roberts AV, Todo T, Tainer JA, Getzoff ED (2003) Identification of a new cryptochrome class: structure, function, and evolution. Mol Cell 11(1):59–67

    Article  CAS  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu Y, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284(5415):760–765

    Article  CAS  PubMed  Google Scholar 

  • Castrillo M, Avalos J (2015) The flavoproteins CryD and VvdA cooperate with the white collar protein WcoA in the control of photocarotenogenesis in Fusarium fujikuroi. PLoS One 10(3):e0119785

    Article  PubMed  PubMed Central  Google Scholar 

  • Castrillo M, García-Martínez J, Avalos J (2013) Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 79(8):2777–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang ST, Hayes WA (1978) The biology and cultivation of edible mushrooms. Academic Press, New York

    Google Scholar 

  • Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, DeMay BS, Gladfelter AS, Dunlap JC, Loros JJ (2010) Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci U S A 107:16715–16720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daiyasu H, Ishikawa T, Kuma K, Iwai S, Todo T, Toh H (2004) Identification of cryptochrome DASH from vertebrates. Genes Cells 9(5):479–495

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta A, Fuller KK, Dunlap JC, Loro JJ (2016) Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 18(1):5–20

    Article  PubMed  Google Scholar 

  • Dong CH, Yao YJ (2010) Comparison of some metabolites among cultured mycelia of Ophiocordyceps sinensis from different geographical regions. Int J Med Mushrooms 12:287–297

    Article  CAS  Google Scholar 

  • Dong CH, Li WJ, Li ZZ, Yan WJ, Li TH, Liu XZ (2016) Cordyceps industry in China: current status, challenges and perspectives—Jinhu declaration for cordyceps industry development. Mycosystema 35(1):1–15 (in Chinese)

    Google Scholar 

  • Fang W, St Leger RJ (2010) Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154:1549–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froehlich AC, Chen CH, Belden WJ, Madeti C, Roenneberg T, Merrow M, Loros JJ, Dunlap JC (2010) Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot Cell 9(5):738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller KK, Dunlap JC, Loros JJ (2016) Fungal light sensing at the bench and beyond. Adv Genet 96:1–51

    CAS  PubMed  Google Scholar 

  • Gin E, Diernfellner ACR, Brunner M, Höfer T (2013) The Neurospora photoreceptor VIVID exerts negative and positive control on light sensing to achieve adaptation. Mol Syst Biol 9:667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godin KS, Varani G (2007) How arginine-rich domains coordinate mRNA maturation events. RNA Biol 4(2):69–75

    Article  CAS  PubMed  Google Scholar 

  • Guo MM, Guo SP, Yang HJ, Bu N, Dong CH (2016) Comparison of major bioactive compounds of the caterpillar medicinal mushroom, Cordyceps militaris (ascomycetes), fruiting bodies cultured on wheat substrate and pupae. Int J Med Mushrooms 18(4):327–336

    Article  PubMed  Google Scholar 

  • Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104(3):453–464

    Article  CAS  PubMed  Google Scholar 

  • Hitomi K, Okamoto K, Daiysasu H, Miyashita H, Iwai S, Toh H, Ishiura M, Todo T (2000) Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res 28(12):2352–2362

  • Huang Y, Baxter R, Smith BS, Partch CL, Colbert CL, Deisenhofer J (2006) Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity. Proc Natl Acad Sci U S A 103(47):17701–17706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm A, Heitman J (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:e95

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khang CH, Park SY, Rho HS, Lee YH, Kang S (2007) Filamentous fungi (Magnaporthe grisea and Fusarium oxysporum). In: Wang K (ed) Agrobacterium protocols, vol 2. Humana, Totowa, pp 403–420

    Google Scholar 

  • Kornerup A, Wanscher JH (1978) Methuen handbook of colour. EyreMethuen, London

    Google Scholar 

  • Lian TT, Yang T, Liu GJ, Sun JD, Dong CH (2014) Reliable reference gene selection for Cordyceps militaris gene expression studies under different developmental stages and media. FEMS Microbiol Lett 356(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Linden H, Ballario P, Macino G (1997) Blue light regulation in Neurospora crassa. Fungal Genet Biol 22:141–150

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and 2-∆∆C(T) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mei QM, Dvornyk V (2015) Evolutionary history of the photolyase/cryptochrome superfamily in eukaryotes. PLoS One 10(9):e0135940

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91(2):173–180

    Article  CAS  PubMed  Google Scholar 

  • Nsa IY, Karunarathna N, Liu X, Huang H, Boetteger B, Bell-Pedersen D (2015) A novel cryptochrome-dependent oscillator in Neurospora crassa. Genetics 199(1):233–245

    Article  CAS  PubMed  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010) A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet Biol 47(4):352–363

    Article  CAS  PubMed  Google Scholar 

  • Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO (2008) Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc Natl Acad Sci U S A 105(52):21023–21027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue light photoreceptors. Chem Rev 103(6):2203–2237

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Shimazu M (2002) Stromata production for Cordyceps militaris (Clavicipitales: Clavicipitaceae) by injection of hyphal bodies to alternative host insects. Appl Entomol Zoo l37:85–92

    Article  Google Scholar 

  • Scheerer P, Zhang F, Kalms J, von Stetten D, Krauβ N, Oberpichler I, Lamparter T (2015) The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways. J Biol Chem 290(18):11504–11514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwerdtfeger C, Linden H (2001) Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol Microbiol 39:1080–1087

    Article  CAS  PubMed  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22(18):4846–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selby CP, Sancar A (2006) A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc Natl Acad Sci U S A 103(47):17696–17700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KM, Sancar G, Dekhang R, Stajich CM, Li SJ, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genome wide mapping of direct targets for Neurospora white collar complex. Eukaryot Cell 9(10):1549–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagua VG, Pausch M, Eckel M, Gutiérrez G, Miralles-Durán A, Sanz C, Eslava AP, Pokorny R, Corrochano LM, Batschauer A (2015) Fungal cryptochrome with DNA repair activity reveals an early stage in cryptochrome evolution. Proc Natl Acad Sci U S A 112(49):15130–15135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol and Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Thandapani P, O’Connor TR, Bailey TL, Richard S (2013) Defining the RGG/RG motif. Mol Cell 50(5):613–623

    Article  CAS  PubMed  Google Scholar 

  • Veluchamy S, Rollins JA (2008) A CRY-DASH-type photolyase/cryptochrome from Sclerotinia sclerotiorum mediates minor UV-A-specific effects on development. Fungal Genet Biol 45(9):1265–1276

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Dong CH (2014) Photo morphogenesis and photo response of the blue-light receptor gene Cmwc-1 in different strains of Cordyceps militaris. FEMS Microbiol Lett 352(2):190–197

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ukil L, Osmani A, Nahm F, Davies J, De Souza CP, Dou X, Perez-Balaguer A, Osmani SA (2004) Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryot Cell 3(5):1359–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Sun JD, Lian TT, Wang WZ, Dong CH (2014) Process optimization or extraction of carotenoids from Cordyceps militaris, an edible and medicinal fungus. Int J Med Mushrooms 16(2):125–135

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Guo M, Yang HJ, Guo SP, Dong CH (2016) The blue light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Microbiol Biotechnol 100(2):743–755

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hamari Z, Han K, Seo J, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41(11):973–981

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z (2003) Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Gen Genom 268(5):645–655

    CAS  Google Scholar 

  • Zhang F, Scheerer P, Oberpichler I, Lamparter T, Krauβ N (2013) Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore. Proc Natl Acad Sci U S A 110(18):7217–7222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Xia YL, Xiao GH, Xiong CH, Hu X, Zhang SW, Zheng HY, Huang Y, Zhou Y, Wang SY, Zhao GP, Liu XZ, St Leger RJ, Wang CS (2011a) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 12(11):R116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Huang C, Cao L, Xie C, Han R (2011b) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115(3):265–274

    Article  CAS  PubMed  Google Scholar 

  • Zheng ZL, Qiu XH, Han RC (2015) Identification of the genes involved in the fruiting body production and cordycepin formation of Cordyceps militaris. Mycobiology 43(1):37–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Gong Z, Su Y, Lin J, Tang K (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61(63):279–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Xingzhong Liu and Wenbing Yin (Institute of Microbiology, Chinese Academy of Sciences) for providing the pAg1-H3 and pPk2-bar-gfp plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihong Dong.

Ethics declarations

Funding

This study was funded by the National Natural Science Foundation of China (31572179, 31600054), by the Coal-based Key Scientific and Technological Project from Shanxi Province (FT2014-03-01), and the Key Research and Development Program from Guangxi Province (2016AB05317).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Song, X., Dong, X. et al. DASH-type cryptochromes regulate fruiting body development and secondary metabolism differently than CmWC-1 in the fungus Cordyceps militaris . Appl Microbiol Biotechnol 101, 4645–4657 (2017). https://doi.org/10.1007/s00253-017-8276-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8276-7

Keywords

Navigation