Skip to main content

Advertisement

Log in

Fusarium species—a promising tool box for industrial biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Global demand for biotechnological products has increased steadily over the years. Thus, need for optimized processes and reduced costs appear as a key factor in the success of this market. A process tool of high importance is the direct or indirect use of enzymes to catalyze the generation of various substances. Also, obtaining aromas and pigments from natural sources has becoming priority in cosmetic and food industries in order to supply the demand from consumers to substitute synthetic compounds, especially when by-products can be used as starting material for this purpose. Species from Fusarium genera are recognized as promising sources of several enzymes for industrial application as well as biocatalysts in the production of aromas, pigments and second generation biofuels, among others. In addition, secondary metabolites from these strains can present important biological activities for medical field. In this approach, this review brings focus on the use of Fusarium sp. strains in biotechnological production of compounds of industrial interest, showing the most recent researches in this area, results obtained and the best process conditions for each case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aditiya HB, Mahila TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production: a critical review. Renew Sust Energ Rev 66:631–653. doi:10.1016/j.rser.2016.07.015

    Article  CAS  Google Scholar 

  • Akilandeswari P, Pradeep BV (2016) Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100:1631–1643. doi:10.1007/s00253-015-7231-8

    Article  CAS  PubMed  Google Scholar 

  • Alfenore S, Molina-Jouve C (2016) Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeast and bacteria. Process Biochem (In Press). doi:10.1016/j.procbio.2016.07.028

    Google Scholar 

  • Ali SS, Khan M, Fagan B, Mullins E, Doohan FM (2012) Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol. AMB Expr 2:16. doi:10.1186/2191-0855-2-16

    Article  CAS  Google Scholar 

  • Ali SS, Nugent B, Mullins E, Doohan FM (2016) Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Expr 6:13. doi:10.1186/s13568-016-0185-0

    Article  CAS  Google Scholar 

  • Ali SS, Vidhale NN (2013) Protease production by Fusarium oxysporum in solid-state fermentation using rice bran. Am J Microbiol Res 1:45–47 doi: 10.12691/ajmr-1-3-2

  • Almeida MN (2013) Complexo celulolítico e hemicelulolítico do fungo endofítico Fusarium verticillioides e sua aplicação para sacarificação do bagaço de cana. Federal University of Viçosa, Dissertation

    Google Scholar 

  • Almeida MN, Falkoski DL, Guimarães VM, Ramos HJO, Visser EM, Maitan-Alfenas GP, Rezende ST (2013) Characteristics of free endoglucanase and glycosidases multienzyme complex from Fusarium verticillioides. Bioresour Technol 143:413–422. doi:10.1016/j.biortech.2013.06.021

    Article  PubMed  CAS  Google Scholar 

  • Almeida MN, Guimarães VM, Falkoski DL, Paes GBT, Ribeiro JI Jr, Visser EM, Alfenas RF, Pereira OL, Rezende ST (2014) Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse. Appl Biochem Biotechnol 172:1332–1346. doi:10.1007/s12010-013-0572-9

    Article  PubMed  CAS  Google Scholar 

  • Amoah J, Ho S, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A (2016) Converting oils high in phospholipids to biodiesel using immobilized Aspergillus oryzae whole-cell biocatalysts expressing Fusarium heterosporum lipase. Biochem Eng J 105:10–15. doi:10.1016/j.bej.2015.08.007

    Article  CAS  Google Scholar 

  • Anasontzis GE, Christakopoulos P (2014) Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered 5:393–395. doi:10.4161/bioe.36328

    Article  PubMed  PubMed Central  Google Scholar 

  • Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas GD, Karagouni AD, Hatzinikolaou (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidates bioprocessing (CBP) of lignocellulosics. J Biotechnol 152:16–23 doi: 10.1016/j.jbiotec.2011.01.002

  • Andre C, Charmoille L (1999) Fusarium isolate and lipases, cutinases and enzyme compositions derived therefrom. USA US5990069A

  • Ariyarathna IR, Karunarathne DN (2016) Microencapsulation stabilizes curcumin for efficient delivery in food applications. Food Packag Shelf Life 10:79–86. doi:10.1016/j.fpsl.2016.10.005

    Article  Google Scholar 

  • Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Kӧhler J, Krug I, Tudzynski B, Humpf HU (2015) Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genet Biol 84:26–36. doi:10.1016/j.fgb.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  • Arnstein HR, Cook AH, Lacey MS (1946) An antibacterial pigment from Fusarium javanicum. Nature 157:333. doi:10.1038/157333b0

    Article  CAS  PubMed  Google Scholar 

  • Ashley JN, Hobbs BC, Raistrick H (1937) Studies in the biochemistry of microorganisms LIII. The crystalline colouring matters of Fusarium culmorum (W.G. Smith) Sacc. and related forms. Biochem J 31:385–397. doi:10.1042/bj0310385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88. doi:10.1016/j.pecs.2014.10.003

    Article  Google Scholar 

  • Baker RA, Tatum JH, Nemec S Jr (1990) Antimicrobial activity of naphthoquinones from fusaria. Mycopathologia 111:9–15. doi:10.1007/bf02277294

    Article  CAS  PubMed  Google Scholar 

  • Barros DPC, Azevedo AM, Cabral JMS, Fonseca LP (2012) Optimization of flavor esters synthesis by Fusarium solani pisi cutinase. J Food Biochem 36:275–284. doi:10.1111/j.1745-4514.2010.00535.x

    Article  CAS  Google Scholar 

  • Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. I J Biological Macromol 86:656–669. doi:10.1016/j.ijbiomac.2015.10.090

    Article  CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1-26 doi:10.10338/já.2005.1

  • Berger RG (2009) Biotechnology of flavours--the next generation. Biotechnol Lett 31:1651–1659. doi:10.1007/s10529-009-0083-5

    Article  CAS  PubMed  Google Scholar 

  • Bicas J, Barros F, Wagner R (2008) Optimization of R-(+)-α-terpineol production by the biotransformation of R-(+)-limonene. J Ind Microbiol Biotechnol 35:1061–1070. doi:10.1007/s10295-008-0383-0

    Article  CAS  PubMed  Google Scholar 

  • Bicas J, de Quadros C, Néri-Numa I, Pastore G (2010a) Integrated process for co-production of alkaline lipase and R-(+)-α-terpineol by Fusarium oxysporum. Food Chem 120:452–456. doi:10.1016/j.foodchem.2009.10.037

    Article  CAS  Google Scholar 

  • Bicas JL, Dionísio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531. doi:10.1021/cr800190y

    Article  CAS  PubMed  Google Scholar 

  • Bicas JL, Silva C, Dionísio AP, Pastore M (2010b) Biotechnological production of bioflavors and functional sugars. Ciênc Tecnol Aliment 30:7–18

    Article  Google Scholar 

  • Bicas JL, Silva WS (2013a) Process of production and deriving pigment application of the fungus Fusarium oxysporum Brazil:BR102013015305

  • Bicas JL, Silva WS (2013b) Processes of dyeing of fabrics and plastics using fungous pigments Brazil:BR102013027036

  • Boonla O, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Prachaney P, Greenwald SE (2014) Curcumin improves endothelial dysfunction and vascular remodelling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide 42:44–53. doi:10.1016/j.niox.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  • Boonyapranai K, Tungpradit R, Hieochaiphant S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466

    CAS  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev 11:21–32. doi:10.3389/fmicb.2014.00656

    CAS  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22. doi:10.1016/j.fgb.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  • Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176. doi:10.1016/j.biortech.2014.09.053

    Article  CAS  PubMed  Google Scholar 

  • Burdock GA (2010) Fenaroli’s handbook of flavor ingredients, sixth. CRC Press, Boca Raton

    Google Scholar 

  • Carocho M, Morales P, Ferreira ICFR (2015) Natural food aditives: quo vadis? Trends Food Sci Tech 45:284–295. doi:10.1016/j.tifs.2015.06.007

    Article  CAS  Google Scholar 

  • Chhaya U, Gupte A (2013) Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation. Ann Microbiol 63:215–223. doi:10.1007/s13213-012-0464-1

    Article  CAS  Google Scholar 

  • Christakopoulos P, Macris BJ, Kekos D (1989) Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzym Microb Technol 11:236–239. doi:10.1016/0141-0229(89)90098-7

    Article  CAS  Google Scholar 

  • Christakopoulos P, Tzalas B, Mamma D, Stamatis H, Liadakis GN, Tzia C, Kekos D, Kolisis FN, Macris BJ (1998) Production of an esterase from Fusarium oxysporum catalysing transesterification reactions in organic solvents. Process Biochem 33:729–733. doi:10.1016/S0032-9592(98)00039-9

    Article  CAS  Google Scholar 

  • Cortinovis C, Pizzo F, Spicer LJ, Caloni F (2013) Fusarium mycotoxins: effects on reproductive function in domestic animals—a review. Theriogenology 80:557–564. doi:10.1016/j.theriogenology.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  • De Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142. doi:10.1016/j.biotechadv.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  • De Castro RJS, Sato HH (2013) Synergistic effects of agroindustrial wastes on simultaneous production of protease and α-amylase under solid state fermentation using a simplex centroid mixture design. Ind Crop Prod 49:813–821. doi:10.1016/j.indcrop.2013.07.002

    Article  CAS  Google Scholar 

  • Deshmukh R, Mathew A, Purohit HJ (2014) Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng 117:443–448. doi:10.1016/j.jbiosc.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh RR, Vidhale NN (2015) Effect of pH on the production of protease by Fusarium oxysporum using agroindustrial waste. Biosci Biotech Res Comm 8:78–83

    Google Scholar 

  • Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Fragr J 28:71–83. doi:10.1002/ffj.3140

    Article  CAS  Google Scholar 

  • Ding L, Dahse HM, Hertweck (2012) Cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum. J Nat Prod 75:617–621 doi: 10.1021/np2008544

  • Ding TZ, Cai L, Dong JW (2016) Fusarium sp fermentation of Fusarium through a solid one creation of a new antimicrobials sambacide method China:CN106117293

  • Dong JW, Cai L, Li XJ, Duan RT, Shu Y, Chen FY, Wang JP, Zhou H, Ding ZT (2016) Production of a new tetracyclic triterpene sulfate metabolite sambacide by solid-state cultivated Fusarium sambucinum B10.2 using potato as substrate. Bioresour Technol 218:1266–1270. doi:10.1016/j.biortech.2016.07.014

    Article  CAS  PubMed  Google Scholar 

  • Du L, Lou L (2009) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278. doi:10.1039/b912037h

    Article  PubMed  Google Scholar 

  • Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Tech 16:389–406. doi:10.1016/j.tifs.2005.02.006

    Article  CAS  Google Scholar 

  • Duran N, Teixeira MFS, De Conti R, Esposito E (2002) Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66. doi:10.1080/10408690290825457

    Article  CAS  PubMed  Google Scholar 

  • Dvorska JE, Surai PF, Speake BK, Sparks NHC (2001) Effect of the mycotoxin aurofusarin on the antioxidant composition and fatty acid profile of quail eggs. Br Poult Sci 42:643–649. doi:10.1080/00071660120088470

    Article  CAS  PubMed  Google Scholar 

  • Dvorska JE, Surai PF, Speake BK, Sparks NHC (2002) Antioxidant systems of the developing quail embryo are compromised by mycotoxin aurofusarin. Comp Biochem Physiol C Toxicol Pharmacol 131:197–205. doi:10.1016/s1532-0456(02)00006-6

    Article  PubMed  Google Scholar 

  • Edel-Hermann V, Gautheron N, Mounier A, Steinberg C (2015) Fusarium diversity in soil using a specific molecular approach and a cultural approach. J Microbiol Methods 111:64–71. doi:10.1016/j.mimet.2015.01.026

  • Escrivá L, Font F, Manyes L (2015) In vivo toxicity studies of fusarium mycotoxins in the last decade: a review. Food Chem Toxicol 78:185–206. doi:10.1016/j.fct.2015.02.005

    Article  PubMed  CAS  Google Scholar 

  • Farhangi B, Alizadeh AM, Khodayari H, Khodayari S, Dehghan MJ, Khori V, Heidarzadeh A, Khaniki M, Sadeghiezadeh M, Najafi F (2015) Protective effects of dendrosomal curcumin on an animal metastatic breast tumor. Eur J Pharmacol 758:188–196. doi:10.1016/j.ejphar.2015.03.076

    Article  CAS  PubMed  Google Scholar 

  • Feron G, Bonnarme P, Durand A (1996) Prospects for the microbial production of food flavours. Trends Food Sci Technol 7:285–293. doi:10.1016/0924-2244(96)10032-7

    Article  CAS  Google Scholar 

  • Feron G, Waché Y (2006) Microbial biotechnology of food flavor production. In: Paliyath G, Pometto A, Levin R (eds) Shetty K. CRC Press Taylor & Franc, Food Biotechnology, pp 407–442

    Google Scholar 

  • Fox EM, Howlett B (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    Article  CAS  PubMed  Google Scholar 

  • Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H (2006) The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a clone link between the naphthoquinones and naphthopyrones. Mol Microbiol 61:1069–1080. doi:10.1111/j.1365-2958.2006.05295.x

    Article  CAS  PubMed  Google Scholar 

  • Frandsen RJN, Rasmussen SA, Knudsen PB, Uhlig S, Petersen D, Lysøe E, Gotfredsen CH, Giese H, Larsen TO (2016) Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin. Sci Rep 6:26206. doi:10.1038/srep26206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Gao R, Cao Y, Guo M, Wei Z, Zhou E, Li Y, Yao M, Yang Z, Zhang N (2014) Curcumin attenuates inflammatory responses by supressing TLR4-mediated NF-kB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 20:54–58. doi:10.1016/j.intimp.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  • Furusawa M, Hashimoto T, Noma Y, Asakawa Y (2005) Biotransformation of citrus aromatics nootkatone and valencene by microorganisms. Chem Pharm Bull 53:1423–1429. doi:10.1248/cpb.53.1423

    Article  CAS  PubMed  Google Scholar 

  • Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99. doi:10.1134/s000368381302004x

    Article  CAS  Google Scholar 

  • Grabarczyk M (2012) Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system. Molecules 17:9741–9753. doi:10.3390/molecules17089741

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567. doi:10.1016/j.rser.2014.08.032

    Article  CAS  Google Scholar 

  • Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41:633–645. doi:10.1016/j.tibs.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals. Ann Rev Microbiol 48:773–780. doi:10.1146/annurev.mi.48.100194.004013

    Article  CAS  Google Scholar 

  • Hama S, Tamalampudi S, Suzuki Y, Yoshida A, Kufuda H, Kondo A (2008) Preparation and comparative characterization of immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase for enzymatic biodiesel production. Appl Microbiol Biotechnol 81:637–645. doi:10.1007/s00253-008-1689-6

    Article  CAS  PubMed  Google Scholar 

  • Hamilton MA, Knorr MS, Cajori FA (1953) Experimental studies of an antibiotic derived from Fusarium bostrycoides. Antibiot Chemother 3:853–860

    CAS  Google Scholar 

  • Hanson JR (2008) The chemistry of fungi. The Royal Society of Chemistry, Cambrige, pp 1–114

    Book  Google Scholar 

  • Harish BS, Ramaiah MJ, Uppulur KB (2015) Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy. Renew Sust Energ Rev 51:533–547. doi:10.1016/j.rser.2015.06.030

    Article  CAS  Google Scholar 

  • Huang Z, Yang R, Guo Z, She Z, Lin Y (2010) New anthraquinone derivative produced by cultivation of mangrove endophytic fungus Fusarium sp. ZZF60 from the South China Sea. Chin J Appl Chem 27:394–395

    CAS  Google Scholar 

  • Husson F, Couturier A, Kermasha S, Belin JM (1998a) Induction and localization of a lipoxygenase from Fusarium proliferatum. J Mol Catal - B Enzym 5:159–163. doi:10.1016/S1381-1177(98)00026-5

    Article  CAS  Google Scholar 

  • Husson F, Pagot Y, Kermasha S, Belin JM (1998b) Fusarium proliferatum: induction and intracellular location of a lipoxygenase. Enzym Microb Technol 23:42–48. doi:10.1016/S0141-0229(98)00009-X

    Article  CAS  Google Scholar 

  • Ibrahim SRM, Abdallah HM, Mohamed GA, Ross SA (2016b) Integracides H-J: new tetracyclic triterpenoids from the endophytic fungus Fusarium sp. Fitoterapia 112:161–167. doi:10.1016/j.fitote.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SRM, Elkhayat ES, Mohamed GA, Fat’hi SM, Ross SA (2016a) Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem Biophys Res Commun 479:211–216. doi:10.1016/j.bbrc.2016.09.041

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim SRM, Mohamed GA, Ross AS (2016c) Integracides F and G: new tetracyclic triterpenoids from the endophytic fungus Fusarium sp. Phytochem Lett 15:125–130. doi:10.1016/j.phytol.2015.12.010

    Article  CAS  Google Scholar 

  • Indira D, Sharmila D, Balasubramanian P, Thirugnanam A, Jayabalan R (2016) Utilization of sea water based media for the production and characterization of cellulase by Fusarium subglutinans MTCC 11891. Biocatal Agric Biotechnol 7:187–192. doi:10.1016/j.bcab.2016.06.006

    Google Scholar 

  • Jackson M, Andersen C, Beier L, Friis EP, Toscano MDGP, Bjoernvad M, Rasmussen FW, Christiansen LS, Souter PF, Bewick LS, Kaasgaard S, Oebro J, Larsen SE, Svendsen A, Johansen AH, Skjoet M (2013) Cleaning compositions comprising amylase variants reference to a sequence listing. France EP2540825A2

  • Jadhav DD, Patil HS, Chaya PS, Thulasiram HV (2016) Fungal mediated kinetic resolution of racemic acetates to (R)-alcohols using Fusarium proliferatum. Tetrahedron Lett 57:4563–4567. doi:10.1016/j.tetlet.2016.08.084

    Article  CAS  Google Scholar 

  • Jun H, Kieselbach T, Jönsson LJ (2011) Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microbial Cell Fact 10:68. doi:10.1186/1475-2859-10-68

    Article  CAS  Google Scholar 

  • Kasprowicz MJ, Gorczyca A, Frandsen RJ (2013) The effect of nanosilver on pigments production by Fusarium culmorum (W.G.Sm) Sacc. Pol J Microbiol 62:365–372

    CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett J (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3:937–947. doi:10.1038/nrmicro1286

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Takashi H, Nakajima H (1981) Isolation, identification and biological activities of 8-O-methyl-javanicin produced by Fusarium solani. Agric Biol Chem 45:2653–2654. doi:10.1080/00021369.1981.10864943

    CAS  Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351. doi:10.1016/s0958-1669(02)00328-2

    Article  CAS  PubMed  Google Scholar 

  • Koda R, Numata T, Hama S, Tamalampudi S, Nakashima K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Ethanolysis of rapeseed oil to produce biodiesel fuel catalyzed by Fusarium heterosporum lipase-expressing fungus immobilized. J Mol Catal B Enzym 66:101–104. doi:10.1016/j.molcatb.2010.04.001

    Article  CAS  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8. doi:10.1007/s002530051129

    Article  CAS  PubMed  Google Scholar 

  • Kundu A, Saha S, Walia S, Dutta TK (2016) Anti-nemic secondary metabolites produced by Fusarium oxysporum f.sp.ciceris. J Asia Pac Entomol 19:631–636. doi:10.1016/j.aspen.2016.06.003

    Article  Google Scholar 

  • Kurobane I, Zaita N, Fukuda A (1986) New metabolites of Fusarium martii related to dihydrofusarubin. J Antibiot 39:205–214. doi:10.7164/antibiotics.39.205

    Article  CAS  PubMed  Google Scholar 

  • Lale GJ, Gadre RV (2016) Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Expr 6:34. doi:10.1186/s13568-016-0205-0

    Article  CAS  Google Scholar 

  • Lant NJ, Erlandsen L, Hansen CV, Vind J, Svendsen A, Sonksen CP (2013) Compositions and methods for surface treatment with lipases. France WO 2013116261A2

  • Lazzaro I, Busman M, Battilani P, Butchko RAE (2012) FUM and BIK gene expression contribute to describe fumonisin and bikaverin synthesis in Fusarium verticiloides. Int J Food Microbiol 160:94–98. doi:10.1016/j.ijfoodmicro.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  • Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol 165:3–8. doi:10.1016/j.biortech.2014.01.127

    Article  CAS  PubMed  Google Scholar 

  • Leslie JF, Summerell BA (2006) The fusarium laboratory manual. Blackwell, London

    Book  Google Scholar 

  • Lopes FC, Tichota DM, Pereira JQ, Segalin J, Rios AO, Brandelli A (2013) Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol 171:616–625. doi:10.1007/s12010-013-0392-y

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087. doi:10.1016/j.lfs.2005.12.007

    Article  CAS  PubMed  Google Scholar 

  • Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49. doi:10.1016/j.cofs.2014.10.001

    Article  Google Scholar 

  • Mäkelä MR, Donofrio N, de Vries RP (2014) Plant biomass degradation by fungi. Fungal Genet Biol 72:2–9. doi:10.1016/j.fgb.2014.08.010

    Article  PubMed  Google Scholar 

  • Manganyi MC, Regnier T, Olivier EI (2015) Antimicrobial activities of selected essential oils against Fusarium oxysporum isolates and their biofilms. S Afr J Bot 99:115–121. doi:10.1016/j.sajb.2015.03.192

    Article  CAS  Google Scholar 

  • Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238. doi:10.1016/j.copbio.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future nature food colorants? Trends Biotechnol 28:300–307. doi:10.1016/j.tibtech.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Maróstica MR, Pastore GM (2007) Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 101:345–350. doi:10.1016/j.foodchem.2005.12.056

    Article  CAS  Google Scholar 

  • Martins N, Roriz CL, Morales P, Barros L, Ferreira ICFR (2016) Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectation and regulatory practices. Trends Food Sci Tech 52:1–15. doi:10.1016/j.tifs.2016.03.009

    Article  CAS  Google Scholar 

  • Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphtoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol 41:503–507. doi:10.1007/s10438-005-0091-8

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progr Energ Combust Sci 38:522–550. doi:10.1016/j.pecs.2012.02.002

    Article  CAS  Google Scholar 

  • Misiek M, Hoffmeister D (2007) Fungal genetics, genomics, and secondary metabolites in pharmaceutical sciences. Planta Med 73:103–115. doi:10.1016/j.fgb.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  • Molina G, Abrahão MRE, Pessôa MG, Bution ML, Paulino BN, Néri-Numa IA, Pastore GM (2016) Industrial additives obtained through microbial biotechnology: bioflavors and biocolorants. In: Gupta VK, Sharma GD, Tuohy MG, Gaur R (eds) The handbook of microbial bioresources, 1ed. CABI Publishing, Boston, pp 549–566. doi:10.1079/9781780645216.0549

    Chapter  Google Scholar 

  • Molina G, Bution ML, Bicas JL, Dolder MAH, Pastore GM (2015) Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B. Food Chem 174:606–613. doi:10.1016/j.foodchem.2014.11.059

    Article  CAS  PubMed  Google Scholar 

  • Molina G, Pessôa MG, Pimentel MR, Pelissari FM, Bicas JL, Pastore GM (2014) Production of natural flavor compounds using monoterpenes as substrates. In: Hu J (ed) New developments in terpene research, 1ed. Nova Publishers, New York, pp 1–24

    Google Scholar 

  • Müller M, Dirlam K, Wenk HH, Berger RG, Krings U, Kaspera R (2005) Method for the production of flavor-active terpenes. Germany WO 2005078110:A1

    Google Scholar 

  • Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes Pigments 75:550–555. doi:10.1016/j.dyepig.2006.07.002

    Article  CAS  Google Scholar 

  • Nelson PE, Desjardins AE, Plattner RD (1993) Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu Rev Phytopathol 31:233–252. doi:10.1146/annurev.py.31.090193.001313

    Article  CAS  PubMed  Google Scholar 

  • Néri-Numa IA, Paulino BN, Pessôa MG, Abrahão MRE, Bution ML, Molina G, Pastore GM (2016) Industrial additives obtained through microbial biotechnology: biosurfactants and prebiotic carbohydrates. In: Gupta VK, Sharma GD, Tuohy MG, Gaur R (eds) The handbook of microbial bioresources, 1ed. CABI Publishing, Boston, pp 528–548. doi:10.1079/9781780645216.0528

    Chapter  Google Scholar 

  • Nielsen RI, Aaslyng DA, Jensen GW, Schneider P (1994) Endoprotease from Fusarium oxysporum DSM 2672 for use in detergents. USA US5288627A

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Progr Energy Combust Sci 37:52–68. doi:10.1016/j.pecs.2010.01.003

    Article  CAS  Google Scholar 

  • Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel NM, Srinivas C (2014) Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell Mol Neurobiol 34:973–985. doi:10.1007/s10571-014-0073-6

    Article  CAS  PubMed  Google Scholar 

  • Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem Res Int 2016:1–8. doi:10.1155/2016/3978124

    Article  Google Scholar 

  • Oliveira BH, Coradi GV, Attili-Angelis D, Scauri C, Luques AHPG, Barbosa AM, Dekker RFH, Neto PO, Lima VMG (2013) Comparison of lipase production on crambe oil and meal by Fusarium sp. (Gibberella fujikuroi complex). Eur J Lipid Sci Technol 115:1413–1425. doi:10.1002/ejlt.201300087

    Article  CAS  Google Scholar 

  • Panagiotou G, Christakopoulos P, Olsson L (2005) Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3-growth characteristics and metabolite profiling. Enzym Microb Technol 36:693–699. doi:10.1016/j.enzmictec.2004.12.029

    Article  CAS  Google Scholar 

  • Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod18:37–45 doi: 10.1016/S0926-6690(03)00018-9

  • Panagiotou G, Topakas E, Moukouli M, Christakopoulos P, Olsson L (2011) Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw. Biomass Bioenergy 35:3727–3732. doi:10.1016/j.biombioe.2011.05.005

    Article  CAS  Google Scholar 

  • Parisot D, Devys M, Barbier M (1990) Naphthoquinone pigments related to fusarubin from the fungus Fusarium solani ( Mart.) Sacc. Microbios 64:31–47

    CAS  PubMed  Google Scholar 

  • Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33:1091–1107. doi:10.1016/j.biotechadv.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  • Petrova A, Dar’in D, Ivanov A, Moskin L, Ishimatsu R, Nakano K, Imato T, Bulatov A (2016) Determination of curcumin in biologically active supplements and food spices using a mesofluidic plataform with fluorescence detection. Talanta 159:300–306. doi:10.1016/j.talanta.2016.06.046

    Article  CAS  PubMed  Google Scholar 

  • Phelps DC, Nemee S, Baker R, Mansell R (1990) Immunoassay for naphthazarin phytoxins produced by Fusarium solani. Phytopathology 80:298–302. doi:10.1094/phyto-80-298

    Article  CAS  Google Scholar 

  • Pollet A, Beliën T, Fierens K, Delcour JA, Courtin CM (2009) Fusarium graminearum xylanases show different functional stabilities, substrate specificities and inhibition sensitivities. Enzym Microb Technol 44:189–195. doi:10.1016/j.enzmictec.2008.12.005

    Article  CAS  Google Scholar 

  • Pradeep FS, Palaniswamy M, Ravi S, Thangamani A, Pradeep BV (2015) Larvicidal activity of a novel isoquinoline type pigment from Fusarium moniliforme KUMBF1201 against Aedes aegypti and Anopheles stephensi. Process Biochem 50:1479–1486. doi:10.1016/j.procbio.2015.05.022

    Article  CAS  Google Scholar 

  • Pradeep FS, Pradeep BV (2013) Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharm Sci 5:526–535

    CAS  Google Scholar 

  • Pradeep FS, Shakilabegan M, Palaniswamy M, Pradeep BV (2013) Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl Sci J 22:70–77

    Google Scholar 

  • Prakash S, Singh G, Soni N, Sharma S (2010) Pathogenicity of Fusarium oxysporum against the larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in laboratory. Parasitol Res 107:651–655. doi:10.1007/s00436-010-1911-1

    Article  PubMed  Google Scholar 

  • Prazeres JN (2006) Produção e caracterização da lipase alcalina de Fusarium oxysporum. State University of Campinas, Dissertation

    Google Scholar 

  • Prazeres JN, Cruz JAB, Pastore GM (2006) Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz J Microbiol 37:505–509. doi:10.1590/S1517-83822006000400019

    Article  Google Scholar 

  • Quadros CP, Duarte MCT, Pastore GM (2011) Biological activities of a mixture of biosurfactants from Bacillus subtilis and alkaline lipase from Fusarium oxysporum. Braz J Microbiol 42:354–361. doi:10.1590/s1517-83822011000100045

    Article  Google Scholar 

  • Rodriguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20–26. doi:10.1016/j.cofs.2015.08.004

    Article  Google Scholar 

  • Sagaram US, Kolomiets M, Shim W (2006) Regulation of fumonisin biosynthesis in Fusarium verticilloides-maize system. Plant Pathol J 22:203–210. doi:10.5423/ppj.2006.22.3.203

    Article  Google Scholar 

  • Sancho RAS, Pastore GM (2012) Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res Int 46:378–386. doi:10.1016/j.foodres.2011.11.021

    Article  CAS  Google Scholar 

  • Sarris J, Latrasse A (1985) Production of odoriferous gamma lactones by Fusarium poae. Agric Biol Chem 49:3227–3230. doi:10.1271/bbb1961.49.3227

    CAS  Google Scholar 

  • Sasanya JJ, Hall C, Wolf-Hall C (2008) Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography–UV–mass spectrometry. J Food Protect 71:1205–1213. doi:10.4315/0362-028x-71.6.1205

    Article  CAS  Google Scholar 

  • Shiono Y, Ariefa NR, Anwar C, Matsjeh S, Sappapan R, Murayama T, Koseki T, Kawamura T, Uesugi S, Kimura KI (2016) New metabolites produced by Fusarium solani T-13 isolated from a dead branch. Phytochem Lett 17:232–237. doi:10.1016/j.phytol.2016.08.003

    Article  CAS  Google Scholar 

  • Siddiqui KS (2015) Some like it hot, some like it cold: temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol Adv 33:1912–1922. doi:10.1016/j.biotechadv.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3. Biotech 6:174. doi:10.1007/s13205-016-0485-8

    Google Scholar 

  • Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim JC (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698. doi:10.1111/j.1365-2672.2007.03581.x

    Article  CAS  PubMed  Google Scholar 

  • Sondergaard TE, Klitgaard LG, Purup S, Kobayashi H, Giese H, Sørensen JL (2012) Estrogenic effects of fusarielins in human breast cancer cell lines. Toxicol Lett 214:259–262. doi:10.1016/j.toxlet.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • Soni H, Rawat HK, Ahirwar S, Kango N (2016) Screening, statistical optimized production and application of β-mannanase from some newly isolated fungi. Eng Life Sci doi. doi:10.1002/elsc.201600136

    Google Scholar 

  • Sørensen JL, Sondergaard TE (2014) The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 170:55–60. doi:10.1016/j.ijfoodmicro.2013.10.024

    Article  PubMed  CAS  Google Scholar 

  • Souza PNC, Grigoletto TLB, Moraes LAB, Abreu LM, Guimarães LHS, Santos C, Glavão LR, Cardoso PG (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22. doi:10.1099/mic.0.000168

    Article  CAS  PubMed  Google Scholar 

  • Stamatis H, Christakopoulos P, Kekos D, Macris BJ, Kolisis FN (1998) Studies on the synthesis of short-chain geranyl esters catalysed by Fusarium oxysporum esterase in organic solvents. J Mol Catal - B Enzym 4:229–236. doi:10.1016/S1381-1177(98)00003-4

    Article  CAS  Google Scholar 

  • Studt L, Wiemann P, Kleigrewe K, Humpf HU, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environm Microbiol 78:4468–4480. doi:10.1128/aem.00823-12

    Article  CAS  Google Scholar 

  • Suresh PV, Sakhare PZ, Sachindra NM, Halami PM (2014) Extracellular chitin deacetylase production in solid state fermentation by native soil isolates of Penicillium monoverticillium and Fusarium oxysporum. J Food Sci Technol 51(8):1594–1599. doi:10.1007/s13197-012-0676-1

    Article  CAS  PubMed  Google Scholar 

  • Takemoto K, Kamisuki S, Chia PT, Kuriyama I, Mizushina Y, Sugawara F (2014) Bioactive dihydronaphthoquinone derivatives from Fusarium solani. J Nat Prod 77:1992–1996. doi:10.1021/np500175j

    Article  CAS  PubMed  Google Scholar 

  • Tatum JH, Baker RA, Berry RE (1985) Naphthoquinones produced by Fusarium oxysporum isolated from citrus. Phytochemistry 24:457–459. doi:10.1016/s0031-9422(00)80746-3

    Article  CAS  Google Scholar 

  • Tatum JH, Baker RA, Berry RE (1987) Naphthoquinones and derivatives from Fusarium. Phytochemistry 26:795–798. doi:10.1016/s0031-9422(00)84789-5

    Article  CAS  Google Scholar 

  • Tatum JH, Baker RA, Berry RE (1989) Metabolites of Fusarium solani. Phytochemistry 28:283–284. doi:10.1016/0031-9422(89)85062-9

    Article  CAS  Google Scholar 

  • Thadathil N, Kuttappan AKP, Vallabaipatel E, Kandasamy M, Velappan SP (2014) Statistical optimization of solid state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products. Ann Microbiol 64:671–681. doi:10.1007/s13213-013-0702-1

    Article  CAS  Google Scholar 

  • Thrane U, Adler A, Clasen PE, Galvano F, Langseth W, Lew H, Logrieco A, Nielsen KF, Ritieni A (2004) Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int J Fodd Microbiol 95:257–266. doi:10.1016/j.ijfoodmicro.2003.12.005

    Article  CAS  Google Scholar 

  • Trisuwan K, Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2010) Antraquinone, cyclopentanone, and naphthoquinne derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F1135. J Nat Prod 73:1507–1511. doi:10.1021/np100282k

    Article  CAS  PubMed  Google Scholar 

  • Trisuwan K, Rukachaisirikul V, Borwornwiriyapanc K, Phongpaichit S, Sakayaroj J (2013) Pyrone derivatives from the soil fungus Fusarium solani PSU-RSPG37. Phytochem Lett 6:495–497. doi:10.1016/j.phytol.2013.06.008

    Article  CAS  Google Scholar 

  • Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678. doi:10.1007/s13197-014-1601-6

    Article  CAS  PubMed  Google Scholar 

  • van der Schaft PH, Burg N ter, van den Bosch S, Cohen AM (1992) Fed-batch production of 2-heptanone by Fusarium poae. Appl Microbiol Biotechnol 36:709–711 doi: 10.1007/bf00172179

  • Vandamme EJ (2003) Bioflavours and fragrances via fungi and their enzymes. Fungal Divers 13:153–166

    Google Scholar 

  • Velmurugan P, Kamala-Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr Polym 79:261–268. doi:10.1016/j.carbpol.2009.07.058

    Article  CAS  Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079. doi:10.1016/j.procbio.2013.06.006

    Article  CAS  Google Scholar 

  • Venugopalan A, Potunuru UR, Dixit M, Srivastava S (2016) Reprint of: effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Tecnol 213:311–318. doi:10.1016/j.biortech.2016.05.023

    Article  CAS  Google Scholar 

  • Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257. doi:10.1016/j.biortech.2014.12.106

    Article  CAS  PubMed  Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584. doi:10.1016/j.jece.2013.10.013

    Article  CAS  Google Scholar 

  • Waśkiewicz A, Stępień L (2012) Mycotoxins biosynthesized by plant-derived Fusarium isolates. Arh Hig Rada Toksikol 63:437–446. doi:10.2478/10004-1254-63-2012-2230

    PubMed  Google Scholar 

  • Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946. doi:10.1111/j.1365-2958.2009.06695.x

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Nian D (2014) Production optimization and molecular structure characterization of a newly isolated novel laccase from Fusarium solani MAS2, an anthracene-degrading fungus. Int Biodeterior Biodegrad 86:382–389. doi:10.1016/j.ibiod.2013.10.015

    Article  CAS  Google Scholar 

  • Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2009:2–4. doi:10.1186/1754-6834-2-4

    Google Scholar 

  • Xiros C, Katapodis P, Christakopoulos P (2009) Evaluation of Fusarium oxysporum cellulolytic system for an efficient hydrolysis of hydrothermally treated wheat straw. Bioresour Technol 100:5362–5365. doi:10.1016/j.biortech.2009.05.065

    Article  CAS  PubMed  Google Scholar 

  • Xiros C, Katapodis P, Christakopoulos P (2011) Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by Fusarium oxysporum enzyme extract. Bioresour Technol 102:1688–1696. doi:10.1016/j.biortech.2010.09.108

    Article  CAS  PubMed  Google Scholar 

  • Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind Crop Prod 28:213–224. doi:10.1016/j.indcrop.2008.02.004

    Article  CAS  Google Scholar 

  • Xu J, Wang X, Hu L, Xia J, Wu Z, Xu N, Dai B, Wu B (2015) A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid. Bioresour Technol 181:18–25. doi:10.1016/j.biortech.2014.12.080

    Article  CAS  PubMed  Google Scholar 

  • Yang SX, Gao JM, Laatsch H, Tian JM, Pescitelli G (2012a) Absolute configuration of fusarone, a new azaphilone from the endophytic fungs Fusarium sp. isolated from Melia azedarach, and of related azaphilones. Chirality 24:621–627. doi:10.1002/chir.22044

    Article  CAS  PubMed  Google Scholar 

  • Yang SX, Gao JM, Zhang Q, Laatsch H (2011) Toxic polyketides produced by Fusarium sp., an endophytic fungus isolated from Melia azedarach. Bioorg Med Chem Lett 21:1887–1889. doi:10.1016/j.bmcl.2010.12.043

    Article  CAS  PubMed  Google Scholar 

  • Yang SX, Wang HP, Gao JM, Zhang Q, Laatsch H, Kuang Y (2012b) Fusaroside, a unique glycolipid from Fusarium sp., an endophytic fungus isolated from Melia azedarach. Org Biomol Chem 10:819–824. doi:10.1039/c1ob06426f

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Choi HS, Park C, Kim SW (2015) Current states and prospects of organic waste utilization for biorefineries. Renew Sust Energ Rev 49:335–349. doi:10.1016/j.rser.2015.04.114

    Article  CAS  Google Scholar 

  • Yusuf F, Chaubey A, Jamwal U, Parshad R (2013) A new isolate from Fusarium proliferatum (AUF-2) for efficient nitrilase production. Appl Biochem Biotechnol 171:1022–1031. doi:10.1007/s12010-013-0416-7

    Article  CAS  PubMed  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774. doi:10.1016/j.rser.2016.08.038

    Article  CAS  Google Scholar 

  • Zaher AM, Makboul MA, Moharram AM, Tekwani BL, Calderón AI (2015) A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J Antibiot 68:197–200. doi:10.1038/ja.2014.129

    Article  CAS  PubMed  Google Scholar 

  • Zhong JJ, Xiao JH (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol 113:79–150. doi:10.1007/10_2008_26

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding agencies Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP—process number 2013/18390-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—process number 460897/2014-4), Fundação de Amparo a Pesquisa do Estado de Minas Gerais and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Gabriel Pessôa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pessôa, M.G., Paulino, B.N., Mano, M.C.R. et al. Fusarium species—a promising tool box for industrial biotechnology. Appl Microbiol Biotechnol 101, 3493–3511 (2017). https://doi.org/10.1007/s00253-017-8255-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8255-z

Keywords

Navigation