Skip to main content
Log in

Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recently, several endophytic fungi have been demonstrated to produce volatile organic compounds (VOCs) with properties similar to fossil fuels, called “mycodiesel,” while growing on lignocellulosic plant and agricultural residues. The fact that endophytes are plant symbionts suggests that some may be able to produce lignocellulolytic enzymes, making them capable of both deconstructing lignocellulose and converting it into mycodiesel, two properties that indicate that these strains may be useful consolidated bioprocessing (CBP) hosts for the biofuel production. In this study, four endophytes Hypoxylon sp. CI4A, Hypoxylon sp. EC38, Hypoxylon sp. CO27, and Daldinia eschscholzii EC12 were selected and evaluated for their CBP potential. Analysis of their genomes indicates that these endophytes have a rich reservoir of biomass-deconstructing carbohydrate-active enzymes (CAZys), which includes enzymes active on both polysaccharides and lignin, as well as terpene synthases (TPSs), enzymes that may produce fuel-like molecules, suggesting that they do indeed have CBP potential. GC-MS analyses of their VOCs when grown on four representative lignocellulosic feedstocks revealed that these endophytes produce a wide spectrum of hydrocarbons, the majority of which are monoterpenes and sesquiterpenes, including some known biofuel candidates. Analysis of their cellulase activity when grown under the same conditions revealed that these endophytes actively produce endoglucanases, exoglucanases, and β-glucosidases. The richness of CAZymes as well as terpene synthases identified in these four endophytic fungi suggests that they are great candidates to pursue for development into platform CBP organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedinifar S, Karimi K, Khanahmadi M, Taherzadeh MJ (2009) Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass Bioenergy 33(5):828–833

    Article  CAS  Google Scholar 

  • Akinosho H, Yee K, Close D, Ragauskas A (2014) The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem 2:66. doi:10.3389/fchem.2014.00066

    Article  PubMed  PubMed Central  Google Scholar 

  • Anasontzis GE, Christakopoulos P (2014) Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered 5(6):393–395. doi:10.4161/bioe.36328

    Article  PubMed  PubMed Central  Google Scholar 

  • Aspeborg H, Coutinho PM, Wang Y, Brumer H III, Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12:186. doi:10.1186/1471-2148-12-186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875. doi:10.1016/j.enconman.2010.08.013

    Article  CAS  Google Scholar 

  • Booth E, Strobel G, Knighton B, Sears J, Geary B, Avci R (2011) A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives. Biotechnol Lett 33(10):1963–1972. doi:10.1007/s10529-011-0660-2

    Article  CAS  PubMed  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68(1):1–108. doi:10.1128/mmbr.68.1.1-108.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couturier M, Roussel A, Rosengren A, Leone P, Stalbrand H, Berrin JG (2013) Structural and biochemical analyses of glycoside hydrolase families 5 and 26 β-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharide catalysis. J Biol Chem 288(20):14624–14635. doi:10.1074/jbc.M113.459438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd D, Kiyonari S, Mackie RI, Cann IK (2010) Functional diversity of four glycoside hydrolase family 3 enzymes from the rumen bacterium Prevotella bryantii B14. J Bacteriol 192(9):2335–2345. doi:10.1128/jb.01654-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards T, Moses T, Dryer F (2010) Evaluation of combustion performance of alternative aviation fuels. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Exhibit. AIAA:2010–7155

  • English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA (2012) Mind the gap: upgrading genomes with Pacific biosciences RS long-read sequencing technology. PLoS One 7(11):e47768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X (2012) A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One 7(2):e31693. doi:10.1371/journal.pone.0031693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favaro L, Viktor MJ, Rose SH, Viljoen-Bloom M, van Zyl WH, Basaglia M, Cagnin L, Casella S (2015) Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases. Biotechnol Bioeng 112(9):1751–1760. doi:10.1002/bit.25591

    Article  CAS  PubMed  Google Scholar 

  • Frandsen KE, Simmons TJ, Dupree P, Poulsen JC, Hemsworth GR, Ciano L, Johnston EM, Tovborg M, Johansen KS, von Freiesleben P, Marmuse L, Fort S, Cottaz S, Driguez H, Henrissat B, Lenfant N, Tuna F, Baldansuren A, Davies GJ, Lo Leggio L, Walton PH (2016) The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat Chem Biol 12(4):298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang SG, Nielsen CB, Butler J, Endrizzi M, Qui DY, Ianakiev P, Pedersen DB, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stabge-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li WX, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868. doi:10.1038/nature01554

    Article  CAS  PubMed  Google Scholar 

  • Gladden JM, Allgaier M, Miller CS, Hazen TC, VanderGheynst JS, Hugenholtz P, Simmons BA, Singer SW (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77(16):5804–5812. doi:10.1128/aem.00032-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladden JM, Taatjes AC, Gao C, Bryan GO, Powell AJ, Scheer AM, Turner K, Wu W, Yu ET (2013) Tailoring next-generation biofuels and their combustion in next-generation engines. Sandia Report:2013–10094

  • Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4):1513–1518

    Article  CAS  PubMed  Google Scholar 

  • Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:D699–D704

    Article  CAS  PubMed  Google Scholar 

  • Guo K, Mou X, Huang J, Xiong N, Li H (2014) Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-κB activation in microglia. J Mol Neurosci 54(1):41–48. doi:10.1007/s12031-014-0243-5

    Article  CAS  PubMed  Google Scholar 

  • Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Ren Sust Energy Rev 27:77–93. doi:10.1016/j.rser.2013.06.033

    Article  CAS  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Poulsen J-CN, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49(15):3305–3316. doi:10.1021/bi100009p

    Article  CAS  PubMed  Google Scholar 

  • Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuel 24(1):267–273

    Article  CAS  Google Scholar 

  • Harvey BG, Wright ME, Koontz TA (2015) High-density renewable diesel and jet fuels prepared from multicyclic sesquiterpanes and a 1-hexene-derived synthetic paraffinic kerosene. Energy Fuel 29(4):2430–2436

    Article  Google Scholar 

  • Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Proc Biochem 47(9):1287–1294. doi:10.1016/j.procbio.2012.05.004

    Article  CAS  Google Scholar 

  • Higashide W, Li Y, Yang Y, Liao JC (2012) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77(8):2727–2733. doi:10.1128/aem.02335-12

    Article  Google Scholar 

  • Kawai R, Igarashi K, Yoshida M, Kitaoka M, Samejima M (2006) Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 71(6):898–906. doi:10.1007/s00253-005-0214-4

    Article  CAS  PubMed  Google Scholar 

  • Kovac J, Simunovic K, Wu Z, Klancnik A, Bucar F, Zhang Q, Mozina SS (2015) Antibiotic resistance modulation and modes of action of (−)-α-pinene in campylobacter jejuni. PLoS One 10(4):e0122871. doi:10.1371/journal.pone.0122871

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349. doi:10.1016/j.biortech.2012.09.104

    Article  CAS  PubMed  Google Scholar 

  • Lei W, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energy 111:1172–1182. doi:10.1016/j.apenergy.2012.08.048

  • Lima MA, Oliveira-Neto M, Kadowaki MAS, Rosseto FR, Prates ET, Squina FM, Leme AFP, Skaf MS, Polikarpov I (2013) Aspergillus niger β-glucosidase has a cellulase-like tadpole molecular shape insights into glycoside hydrolase family 3(GH3) β-glucosidase structure and fuction. J Biol Chem 288(46):32991–33005. doi:10.1074/jbc.M113.479279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(DI):D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583. doi:10.1016/j.copbio.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Bruno VM, Fang Z, Meng X, Blow M, Zhang T, Sherlock G, Snyder M, Wang Z (2010) Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads. BMC Genomics 11:663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560. doi:10.1038/nbt1008-1193a

    Article  CAS  PubMed  Google Scholar 

  • Mba Medie F, Davies GJ, Drancourt M, Henrissat B (2012) Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10(3):227–234

    Article  PubMed  Google Scholar 

  • Miao Y, Liu D, Li G, Li P, Xu Y, Shen Q, Zhang R (2015) Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes. BMC Genomics 16:459. doi:10.1186/s12864-015-1658-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Newis K, Lenfant N, Lombard V, Henrissat B (2016) Dividing the large glycoside hydrolase family 43 into subfamilies: a motivation for detailed enzyme characterization. Appl Environ Microbiol 82(6):1686–1692

    Article  Google Scholar 

  • Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405

    Article  CAS  PubMed  Google Scholar 

  • Pant A, Saikia SK, Shukla V, Asthana J, Akhoon BA, Pandey R (2014) β-Caryophyllene modulates expression of stress response genes and mediates longevity in Caenorhabditis elegans. Exp Gerontol 57:81–95. doi:10.1016/j.exger.2014.05.007

    Article  CAS  PubMed  Google Scholar 

  • Parisutham V, Kim TH, Lee SK (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour Technol 161:431–440. doi:10.1016/j.biortech.2014.03.114

    Article  CAS  PubMed  Google Scholar 

  • Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A (2009) Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 37(18):e123

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandgren M, Wu M, Karkehabadi S, Mitchinson C, Kelemen BR, Larenas EA, Stahlberg J, Hansson H (2013) The structure of a bacterial cellobiohydrolase: the catalytic core of the Thermobifida fusca family GH6 cellobiohydrolase Cel6B. J Mol Biol 425(3):622–635. doi:10.1016/j.jmb.2012.11.039

    Article  CAS  PubMed  Google Scholar 

  • Schuster BG, Chinn MS (2013) Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. Bioenerg Res 6(2):416–435. doi:10.1007/s12155-012-9278-z

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Soares Junior FL, Franco Dias AC, Fasanella CC, Taketani RG, de Souza Lima AO, Melo IS, Andreote FD (2013) Endo- and exoglucanase activities in bacteria from mangrove sediment. Braz J Microbiol 44(3):969–976

    Article  PubMed  Google Scholar 

  • Strobel G (2014) The story of mycodiesel. Curr Opin Microbiol 19:52–58. doi:10.1016/j.mib.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2015) Bioprospecting-fuels from fungi. Biotechnol Lett 37(5):973–982. doi:10.1007/s10529-015-1773-9

    Article  CAS  PubMed  Google Scholar 

  • Tanasova M, Sturla SJ (2012) Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents. Chem Rev 112(6):3578–3610. doi:10.1021/cr2001367

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Beeson WT, Lavarone AT, Sun J, Marletta MA, Cate JH, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A 106(52):22157–22162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energy 111:1172–1182. doi:10.1016/j.apenergy.2012.08.048

    Article  CAS  Google Scholar 

  • Wei H, Wang W, Alahuhta M, Wall TV, Baker JO, Taylor LE II, Decker SR, Himmel ME, Zhang M (2014) Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing. Biotechnol Biofuels 7(1):148. doi:10.1186/s13068-014-0148-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu W (2013) Fuel ethanol production using novel carbon sources and fermentation medium optimization with response surface methodology. Int J Agric Biol Eng 6(2):42–53. doi:10.3965/j.ijabe.20130602.006

    CAS  Google Scholar 

  • Wu W, Davis RW (2016) One-pot bioconversion of algae biomass into terpenes for advanced biofuels and bioproducts. Algal Res 17:316–320

  • Wu W, Fan Z (2013) A general inhibition kinetics model for ethanol production using a novel carbon source: sodium gluconate. Bioprocess Biosyst Eng 36(11):1631–1640. doi:10.1007/s00449-013-0938-y

  • Wu W, Hildebrand A, Kasuga T, Xiong X, Fan Z (2013a) Direct cellobiose production from cellulose using sextuple β-glucosidase gene deletion Neurospora crassa mutants. Enzym Microb Technol 52(3):184–189. doi:10.1016/j.enzmictec.2012.12.010

  • Wu W, Kasuga T, Xiong X, Ma D, Fan Z (2013b) Location and contribution of individual β-glucosidase from Neurospora crassa to total β-glucosidase activity. Arch Microbiol 195(12):823–829

  • Wu W, Tran-Gyamfi MB, Jaryenneh JD, Davis RW (2016a) Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation. Algal Res 19:162–167

    Article  Google Scholar 

  • Wu W, Tran W, Taatjes CA, Alonso-Gutierrez J, Lee TS, Gladden JM (2016b) Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae. PLoS One 11(2):e0146983

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Z, Storms R, Tsang A (2005) Microplate-based carboxymethylcellulose assay for endoglucanase activity. Anal Biochem 342(1):176–178. doi:10.1016/j.ab.2005.01.052

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Hasunuma T, Kondo A (2013) Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv 31(6):754–763. doi:10.1016/j.biotechadv.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  • Zheng F, Ding S (2013) Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl Environ Microbiol 79(3):989–996. doi:10.1128/aem.02725-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Liu Y, Yan Q, Chen Z, Qin Z, Jiang Z (2014) Structural insights into the substrate specificity and transglycosylation activity of a fungal glycoside hydrolase family 5 β-mannosidase. Acta Crystallogr D Biol Crystallogr 70(Pt 11):2970–2982. doi:10.1107/s1399004714019762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy’s National Nuclear Security Agency under contract DE-AC04-94AL85000. The authors want to thank Dr. Gary A. Strobel for providing the endophytes. The work by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231.

Author contributions

W.W.H. conceived and designed the study, performed the experiments and data analysis, and wrote and revised the manuscript. R.W.D. revised the manuscript. J.M.G. supervised the study and revised the manuscript. M.B.T. maintained the endophyte seed stock. H.H., S.M., and M. C. sequenced genomes and transcriptomes. K.L. and H.S. assembled genomes. E.L. assembled transcriptomes. A.K. annotated genomes. B.H. annotated the CAZymes. K.B. manages the genome project. I.V.G. coordinated the genome projects and revised the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Wu or John M. Gladden.

Ethics declarations

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

.

ESM 1

(PDF 1792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Davis, R.W., Tran-Gyamfi, M.B. et al. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl Microbiol Biotechnol 101, 2603–2618 (2017). https://doi.org/10.1007/s00253-017-8091-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8091-1

Keywords

Navigation