Skip to main content
Log in

Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biosynthesis of quantum dots has been explored as an alternative to traditional physicochemical methods; however, relatively few studies have determined optimal synthesis parameters. Saccharomyces cerevisiae sequentially treated with sodium selenite and cadmium chloride synthesized CdSe quantum dots in the cytoplasm. These nanoparticles displayed a prominent yellow fluorescence, with an emission maximum of approximately 540 nm. The requirement for glutathione in the biosynthetic mechanism was explored by depleting its intracellular content through cellular treatments with 1-chloro-2,4-dinitrobenzene and buthionine sulfoximine. Synthesis was significantly inhibited by both of these reagents when they were applied after selenite treatment prior to the addition of cadmium, thereby indicating that glutathione contributes to the biosynthetic process. Determining the optimum conditions for biosynthesis revealed that quantum dots were produced most efficiently at entry into stationary phase followed by direct addition of 1 mM selenite for only 6 h and then immediately incubating these cells in fresh growth medium containing 3 mM Cd (II). Synthesis of quantum dots reached a maximum at 84 h of reaction time. Biosynthesis of 800-μg g−1 fresh weight cells was achieved. For the first time, significant efforts have been undertaken to optimize each aspect of the CdSe biosynthetic procedure in S. cerevisiae, resulting in a 70% increased production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70:142–146. doi:10.1016/j.colsurfb.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  • Bawendi MG, Steigerwald ML, Brus LE (1990) The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu Rev Phys Chem 41:477–496. doi:10.1146/annurev.pc.41.100190.002401

    Article  CAS  Google Scholar 

  • Bierla K, Bianga J, Ouerdane L, Szpunar J, Yiannikouris A, Lobinski R (2013) A comparative study of the Se/S substitution in methionine and cysteine in Se-enriched yeast using an inductively coupled plasma mass spectrometry (ICP MS)-assisted proteomics approach. J Proteome 87:26–39. doi:10.1016/j.jprot.2013.05.010

    Article  CAS  Google Scholar 

  • Chakrabarty A, Marre S, Landis RF, Rotello VM, Maitra U, Guerzo AD, Aymonier C (2015) Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. J Mater Chem C 3:7561–7566. doi:10.1039/C5TC01115A

    Article  CAS  Google Scholar 

  • Chibli H, Carlini L, Park S, Dimitrijevic NM, Nadeau JL (2011) Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale 3:2552–2559. doi:10.1039/C1NR10131E

    Article  CAS  PubMed  Google Scholar 

  • Crouch DJ, O’Brien P, Malik MA, Skabara PJ, Wright SP (2003) A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor. Chem Commun:1454–1455. doi:10.1039/b301096a

  • Cui R, Y-P G, Zhang Z-L, Xie Z-X, Tian Z-Q, Pang D-W (2012) Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem. J Mater Chem 22:3713–3716. doi:10.1039/C2JM15691A

    Article  CAS  Google Scholar 

  • Cui R, Liu H-H, Xie H-Y, Zhang Z-L, Yang Y-R, Pang D-W, Xie Z-X, Chen B-B, Hu B, Shen P (2009) Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv Funct Mater 19:2359–2364. doi:10.1002/adfm.200801492

    Article  CAS  Google Scholar 

  • Cui S-Y, Jin H, Kim S-J, Kumar AP, Lee Y-I (2008) Interaction of glutathione and sodium selenite in vitro investigated by electrospray ionization tandem mass spectrometry. J Biochem (Tokyo) 143:685–693. doi:10.1093/jb/mvn023

    Article  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989a) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597. doi:10.1038/338596a0

    Article  CAS  Google Scholar 

  • Dameron CT, Smith BR, Winge DR (1989b) Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. J Biol Chem 264:17355–17360

    CAS  PubMed  Google Scholar 

  • Gailer J (2002) Review: reactive selenium metabolites as targets of toxic metals/metalloids in mammals: a molecular toxicological perspective. Appl Organomet Chem 16:701–707. doi:10.1002/aoc.376

    Article  CAS  Google Scholar 

  • Holmes JD, Richardson DJ, Saed S, Evans-Gowing R, Russell DA, Sodeau JR (1997) Cadmium-specific formation of metal sulfide “Q-particles” by Klebsiella pneumoniae. Microbiol Read Engl 143(Pt 8):2521–2530

    Article  CAS  Google Scholar 

  • Horvath JJ, Glazier SA, Spangler CJ (1993) In situ fluorescence cell mass measurements of Saccharomyces cerevisiae using cellular tryptophan. Biotechnol Prog 9:666–670. doi:10.1021/bp00024a016

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51. doi:10.1038/nbt767

    Article  CAS  PubMed  Google Scholar 

  • Kessi J, Hanselmann KW (2004) Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 279:50662–50669. doi:10.1074/jbc.M405887200

    Article  CAS  PubMed  Google Scholar 

  • Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442:180–183. doi:10.1038/nature04855

    Article  CAS  PubMed  Google Scholar 

  • Letavayová L, Vlasáková D, Spallholz JE, Brozmanová J, Chovanec M (2008) Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutat Res Mol Mech Mutagen 638:1–10. doi:10.1016/j.mrfmmm.2007.08.009

    Article  Google Scholar 

  • Li L, Daou TJ, Texier I, Chi TTK, Liem NQ, Reiss P (2009) Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21:2422–2429. doi:10.1021/cm900103b

    Article  CAS  Google Scholar 

  • Li Y, Cui R, Zhang P, Chen B-B, Tian Z-Q, Li L, Hu B, Pang D-W, Xie Z-X (2013) Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway. ACS Nano 7:2240–2248. doi:10.1021/nn305346a

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446. doi:10.1038/nmat1390

    Article  CAS  PubMed  Google Scholar 

  • Mi C, Wang Y, Zhang J, Huang H, Xu L, Wang S, Fang X, Fang J, Mao C, Xu S (2011) Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J Biotechnol 153:125–132. doi:10.1016/j.jbiotec.2011.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal BN, Robel I, Mohite A, Laocharoensuk R, Werder DJ, Klimov VI (2012) High-sensitivity pn junction photodiodes based on PbS nanocrystal quantum dots. Adv Funct Mater 22:1741–1748. doi:10.1002/adfm.201102532

    Article  CAS  Google Scholar 

  • Pandian SRK, Deepak V, Kalishwaralal K, Gurunathan S (2011) Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzym Microb Technol 48:319–325. doi:10.1016/j.enzmictec.2011.01.005

    Article  CAS  Google Scholar 

  • Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH (2010) Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4:3374–3380. doi:10.1021/nn100335g

    Article  CAS  PubMed  Google Scholar 

  • Ponce de León CA, Bayón MM, Paquin C, Caruso JA (2002) Selenium incorporation into Saccharomyces cerevisiae cells: a study of different incorporation methods. J Appl Microbiol 92:602–610. doi:10.1046/j.1365-2672.2002.01562.x

    Article  PubMed  Google Scholar 

  • Prévéral S, Ansoborlo E, Mari S, Vavasseur A, Forestier C (2006) Metal(loid)s and radionuclides cytotoxicity in Saccharomyces cerevisiae: role of YCF1, glutathione and effect of buthionine sulfoximine. Biochimie 88:1651–1663. doi:10.1016/j.biochi.2006.05.016

    Article  PubMed  Google Scholar 

  • Sandana Mala JG, Rose C (2014) Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J Biotechnol 170:73–78. doi:10.1016/j.jbiotec.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  • Shirasaki Y, Supran GJ, Bawendi MG, Bulović V (2013) Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7:13–23. doi:10.1038/nphoton.2012.328

    Article  CAS  Google Scholar 

  • Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Analyst 129:672–677. doi:10.1039/B404498N

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200. doi:10.1021/ar9001069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64. doi:10.1016/0891-5849(94)90007-8

    Article  CAS  PubMed  Google Scholar 

  • Stürzenbaum SR, Höckner M, Panneerselvam A, Levitt J, Bouillard J-S, Taniguchi S, Dailey L-A, Khanbeigi RA, Rosca EV, Thanou M, Suhling K, Zayats AV, Green M (2013) Biosynthesis of luminescent quantum dots in an earthworm. Nat Nanotechnol 8:57–60. doi:10.1038/nnano.2012.232

    Article  PubMed  Google Scholar 

  • Suhajda Á, Hegóczki J, Janzsó B, Pais I, Vereczkey G (2000) Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J Trace Elem Med Biol 14:43–47. doi:10.1016/S0946-672X (00)80022-X

    Article  CAS  PubMed  Google Scholar 

  • Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen JHM, Nabiev I (2004) Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal Biochem 324:60–67. doi:10.1016/j.ab.2003.09.031

    Article  CAS  PubMed  Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1155. doi:10.1016/j.chembiol.2004.08.022

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G (1994) A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol 10:415–421

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46. doi:10.1038/nbt764

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Song L, Zhu C (2011) Turn-on and near-infrared fluorescent sensing for 2,4,6-trinitrotoluene based on hybrid (gold nanorod)-(quantum dots) assembly. Anal Chem 83:1401–1407. doi:10.1021/ac1028825

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Qian J, Gu Y, Su Y, Ai X, Wu S (2014) Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells. Mater res. Express 1:015401. doi:10.1088/2053-1591/1/1/015401

    Google Scholar 

  • Yu W, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860. doi:10.1021/cm034081k

    Article  CAS  Google Scholar 

  • Zhang R, Chen W (2014) Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron 55:83–90. doi:10.1016/j.bios.2013.11.074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (Grant No. 3740-08) and the Advisory Research Committee of Queen’s University, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Lefebvre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, J., Lefebvre, D.D. Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 101, 2735–2745 (2017). https://doi.org/10.1007/s00253-016-8056-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8056-9

Keywords

Navigation