Skip to main content

Advertisement

Log in

Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ripening of blue-veined cheeses, such as the French Bleu and Roquefort, the Italian Gorgonzola, the English Stilton, the Danish Danablu or the Spanish Cabrales, Picón Bejes-Tresviso, and Valdeón, requires the growth and enzymatic activity of the mold Penicillium roqueforti, which is responsible for the characteristic texture, blue-green spots, and aroma of these types of cheeses. This filamentous fungus is able to synthesize different secondary metabolites, including andrastins, mycophenolic acid, and several mycotoxins, such as roquefortines C and D, PR-toxin and eremofortins, isofumigaclavines A and B, and festuclavine. This review provides a detailed description of the main secondary metabolites produced by P. roqueforti in blue cheese, giving a special emphasis to roquefortine, PR-toxin and mycophenolic acid, and their biosynthetic gene clusters and pathways. The knowledge of these clusters and secondary metabolism pathways, together with the ability of P. roqueforti to produce beneficial secondary metabolites, is of interest for commercial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali H, Ries MI, Nijland JG, Lankhorst PP, Hankemeier T, Bovenberg RA, Vreeken RJ, Driessen AJ (2013) A branched biosynthetic pathway is involved in production of roquefortine and related compounds in Penicillium chrysogenum. PLoS One 8:e65328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson HA, Bracewell JM, Fraser AR, Jones D, Robertson GW, Russell JD (1988) 5-Hydroxymaltol and mycophenolic acid, secondary metabolites from Penicillium echinulatum. Trans Br Mycol Soc 91:649–651

    Article  CAS  Google Scholar 

  • Aninat C, Hayashi Y, André F, Delaforge M (2001) Molecular requirements for inhibition of cytochrome p450 activities by roquefortine. Chem Res Toxicol 14:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Arnold DL, Scott PM, McGuire PF, Hawig J, Nera EA (1987) Acute toxicity studies on roquefortine and PR toxin, metabolites of Penicillium roqueforti in the mouse. Food Cosmet Toxicol 16:369–371

    Article  Google Scholar 

  • Arnoux B, Pascard C, Moreau S (1977) Eremofortin D, a valencane-class sesquiterpene. Acta Cryst 33:2930–2932

    Article  Google Scholar 

  • Barrow KD, Colley PW, Tribe DE (1979) Biosynthesis of the neurotoxin alkaloid roquefortine. J Chem Soc Chem Commun 1979:225–226

    Article  Google Scholar 

  • Bentley R (2000) Mycophenolic acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev 100:3801–3826

    Article  CAS  PubMed  Google Scholar 

  • Boysen M, Skouboe P, Frisvad JC, Rossen L (1996) Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 142:541–549

    Article  CAS  PubMed  Google Scholar 

  • Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109:3903–3990

    Article  PubMed  Google Scholar 

  • Cakmakci S, Gurses M, Hayaloglu AA, Cetin B, Sekerci P, Dagdemir E (2015) Mycotoxin production capability of Penicillium roqueforti in strains isolated from mould-ripened traditional Turkish civil cheese. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:245–249

    Article  CAS  PubMed  Google Scholar 

  • Chalmers AA, de Jesus AE, Gorst-Allman CP, Steyn PS (1981) Biosynthesis of PR toxin by Penicillium roqueforti. J Chem Soc Perkinn 1:2899–2903

    Article  Google Scholar 

  • Chang L, Tsai W (1998) Isolation, purification, and characterization of the PR oxidase from Penicillium roqueforti. Appl Environ Microbiol 64:5012–5015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Lu K, Yeh S (1993) Secondary metabolites resulting from degradation of PR-toxin by Penicillium roqueforti. Appl Environ Microbiol 59:981–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SC, Yeh SF, Li SY, Lei WY, Chen MY (1996) A novel secondary metabolite relative to the degradation of PR toxin by Penicillium roqueforti. Curr Microbiol 32:141–146

    Article  CAS  PubMed  Google Scholar 

  • Chang SC, Lei WY, Tsai YC, Wei YH (1998) Isolation, purification, and characterization of the PR oxidase from Penicillium roqueforti. Appl Environ Microbiol 64:5012–5015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SC, Ho CP, Cheng MK (2004a) Isolation, purification, and characterization of the PR-amide synthetase from Penicillium roqueforti. Fung Sci 19:117–123

    Google Scholar 

  • Chang SC, Cheng MK, Wei YH (2004b) Production of PR-imine, PR-acid, and PR-amide relative to the metabolism of PR toxin by Penicillium roqueforti. Fung Sci 19:39–46

    Google Scholar 

  • Chen FC, Chen CF, Wei RD (1982) Acute toxicity of PR toxin, a mycotoxin from Penicillium roqueforti. Toxicon 20:433–441

    Article  CAS  PubMed  Google Scholar 

  • Cole RJ, Dorner JW, Cox RH, Raymond LW (1983) Two classes of alkaloid mycotoxins produced by Penicillium crustosum Thom isolated from contaminated beer. J Agric Food Chem 31:655–657

    Article  CAS  PubMed  Google Scholar 

  • Dai MC, Tabacchi R, Saturnin C (1993) Nitrogen-containing aromatic compound from the culture medium of Penicillium chrysogenum THOM. Chimia 47:226–229

    CAS  Google Scholar 

  • Deetae P, Bonnarme P, Spinnler HE, Helinck S (2007) Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 76:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Del-Cid A, Gil-Durán C, Vaca I, Rojas-Aedo JF, García-Rico RO, Levicán G, Chávez R (2016) Identification and functional analysis of the mycophenolic acid gene cluster of Penicillium roqueforti. PLoS One 11:e0147047

    Article  PubMed  PubMed Central  Google Scholar 

  • Driehuis F (2013) Silage and the safety and quality of dairy foods: a review. Agric Food Sci 22:16–34

    CAS  Google Scholar 

  • Engel G, Teuber M (1978) Simple aid for the identification of Penicillium roqueforti Thom: growth in acetic acid. Eur J Appl Microbiol Biotechnol 6:107–111

    Article  Google Scholar 

  • Engel G, Teuber M (1983) Differentiation of Penicillium roqueforti strains by thin-layer chromatography of metabolites. Milchwissenschaft 38:513–516

    CAS  Google Scholar 

  • Engel G, von Milczewski KE, Prokopek D, Teuber M (1982) Strain-specific synthesis of mycophenolic acid by Penicillium roqueforti in blue-veined cheese. Appl Environ Microbiol 43:1034–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eugui EM, Almquist SJ, Muller CD, Allison AC (1991) Lymphocyte-selective cytostatic and immunosuppressive effects of mycophenolic acid in vitro: role of deoxyguanosine nucleotide depletion. Scand J Immunol 33:161–173

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Bodega MA, Mauriz E, Gómez A, Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol 136:18–25

    Article  PubMed  Google Scholar 

  • Filtenborg O, Frisvad JC, Thrane U (1996) Moulds in food spoilage. Int J Food Microbiol 33:85–102

    Article  CAS  PubMed  Google Scholar 

  • Finoli C, Vecchio A, Galli A, Dragoni I (2001) Roquefortine C occurrence in blue cheese. J Food Prot 64:246–251

    CAS  PubMed  Google Scholar 

  • Florey HW, Jennings MA (1946) Mycophenolic acid; an antibiotic from Penicillium brevicompactum Dlerckx. Lancet 1:46–49

    Article  CAS  PubMed  Google Scholar 

  • Fontaine K, Passerò E, Vallone L, Hymery N, Coton M, Jany JL, Mounier J, Coton E (2015) Occurrence of roquefortine C, mycophenolic acid and aflatoxin M1 mycotoxins in blue-veined cheeses. Food Control 47:634–640

    Article  CAS  Google Scholar 

  • Frisvad JC, Filtenborg O (1989) Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia 81:837–861

    Article  CAS  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA, Robert A (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MA, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18:1499–1512

    Article  PubMed  Google Scholar 

  • Gorst-Allman CP, Steyn PS, Vleggaar R (1982) The biosynthesis of roquefortine. An investigation of acetate and mevalonate incorporation using high field n.m.r. spectroscopy. J Chem Soc Chem Commun 1982:652–653

    Article  Google Scholar 

  • Häggblom P (1990) Isolation of roquefortine C from feed grain. Appl Environ Microbiol 56:2924–2926

    PubMed  PubMed Central  Google Scholar 

  • Hansen BG, Genee HJ, Kaas CS, Nielsen JB, Mortensen UH, Frisvad JC, Patil KR (2011) A new class of IMP dehydrogenases with a role in self-resistance in mycophenolic acid producing fungi. BMC Microbiol 11:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen BG, Mnich E, Nielsen KF, Nielsen JB, Nielsen MT, Mortensen UH, Larsen TO, Patil KR (2012) Involvement of a natural fusion of a cytochrome P450 and a hydrolase in mycophenolic acid biosynthesis. Appl Environ Microbiol 78:4908–4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol 62:11–24

    Article  CAS  PubMed  Google Scholar 

  • Hohn TM, Plattner RD (1989) Purification and characterization of the sesquiterpene cyclase aristolochene synthase from Penicillium roqueforti. Arch Biochem Biophys 272:137–143

    Article  CAS  PubMed  Google Scholar 

  • Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken J, Frisvad JC, Samson RA (2010) Sex in Penicillium series roqueforti. IMA Fungus 1:171–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh KP, Yu S, Wei YH, Chen CF, Wei RD (1986) Inhibitory effect in vitro of PR toxin, a mycotoxin from Penicillium roqueforti, on the mitochondrial HCO-3-ATPase of the rat brain, heart and kidney. Toxicon 24:153–160

    Article  CAS  PubMed  Google Scholar 

  • Hymery N, Vasseur V, Coton M, Mounier J, Jany JL, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437–456

    Article  CAS  Google Scholar 

  • Ismaiel AA, Ahmed AS, El-Sayed e-SR (2014) Optimization of submerged fermentation conditions for immunosuppressant mycophenolic acid production by Penicillium roqueforti isolated from blue-molded cheeses: enhanced production by ultraviolet and gamma irradiation. World J Microbiol Biotechnol 30:2625–2638

    Article  CAS  PubMed  Google Scholar 

  • Kokkonen M, Jestoi M, Rizzo A (2005) Determination of selected mycotoxins in mould cheeses with liquid chromatography coupled to tandem with mass spectrometry. Food Addit Contam 22:449–456

    Article  CAS  PubMed  Google Scholar 

  • Kopp-Holtwiesche B, Rehm HJ (1981) Studies in the inhibition of bacterial macromolecule synthesis by roquefortine, a mycotoxin from Penicillium roqueforti. European J Appl Microbiol Technol 13:232–235

    Article  Google Scholar 

  • Kopp-Holtwiesche B, Rehm HJ (1990) Antimicrobial action of roquefortine. J Environ Pathol Toxicol Oncol 10:41–44

    CAS  PubMed  Google Scholar 

  • Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612

    Article  PubMed  Google Scholar 

  • Kozlovsky AG, Vinokurova NG, Reshetilova TA, Sakharovsky VG, Baskunov BP, Seleznev SG (1994) New metabolites of Penicillium glandicola var. glandicola: glandicoline A and glandicoline B. Appl Biochem Microbiol 30:334–337

    Google Scholar 

  • Lafont P, Siriwardana MG, Combemale I, Lafont J (1979) Mycophenolic acid in marketed cheeses. Food Cosmet Toxicol 17:147–149

    Article  CAS  PubMed  Google Scholar 

  • Lallès JP (2016) Dairy products and the French paradox: could alkaline phosphatases play a role? Med Hypotheses 92:7–11

    Article  PubMed  Google Scholar 

  • Lee HJ, Pawlak K, Nguyen BT, Robins RK, Sadée W (1985) Biochemical differences among four inosinate dehydrogenase inhibitors, mycophenolic acid, ribavirin, tiazofurin, and selenazofurin, studied in mouse lymphoma cell culture. Cancer Res 45:5512–5520

    CAS  PubMed  Google Scholar 

  • López-Díaz TM, Román-Blanco C, García-Arias MT, García-Fernández MC, García-López ML (1996) Mycotoxins in two Spanish cheese varieties. Int J Food Microbiol 30(3):391–395

  • Martín JF, Coton M (2016) Blue cheese: microbiota and fungal metabolites. In: Frias J, Martínez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Elsevier, New York IN PRESS

    Google Scholar 

  • Martín JF, Liras P (2016) Evolutionary formation of gene clusters by reorganization: the meleagrin/roquefortine paradigm in different fungi. Appl Microbiol Biotechnol 100:1579–1587

    Article  PubMed  Google Scholar 

  • Mioso R, Toledo Marante FJ, Herrera Bravo de Laguna I (2015) Penicillium roqueforti: a multifunctional cell factory of high value-added molecules. J Appl Microbiol 118:781–791

    Article  CAS  PubMed  Google Scholar 

  • Möller T, Akerstrand K, Massoud T (1997) Toxin-producing species of Penicillium and the development of mycotoxins in must and homemade wine. Nat Toxins 5:86–89

    Article  PubMed  Google Scholar 

  • Moreau S, Gaudemer A, Lablache-Combier A, Biguet J (1976) Metabolites de Penicillium roqueforti: PR toxine et metabolites associes. Tetrahedron Lett 11:833–834

    Article  Google Scholar 

  • Moreau S, Lablache-Combier A, Biguet J (1980) Production of eremofortins A, B, and C relative to formation of PR toxin by Penicillium roqueforti. Appl Environ Microbiol 39:770–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moulé Y, Jemmali M, Rousseau N (1976) Mechanism of the inhibition of transcription by PR toxin, a mycotoxin from Penicillium roqueforti. Chem Biol Interact 14:207–216

    Article  PubMed  Google Scholar 

  • Moulé Y, Moreau S, Bousquet JF (1977) Relationship between the chemical structure and the biological properties of some eremophilane compounds related to PR toxin. Chem Biol Interact 17:185–192

    Article  PubMed  Google Scholar 

  • Nielsen KF, Dalsgaard PW, Smedsgaard J, Larsen TO (2005) Andrastins A-D, Penicillium roqueforti metabolites consistently produced in blue-mold-ripened cheese. J Agric Food Chem 53:2908–2913

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KF, Sumarah MW, Frisvad JC, Miller JD (2006) Production of metabolites from the Penicillium roqueforti complex. J Agric Food Chem 54:3756–3763

    Article  CAS  PubMed  Google Scholar 

  • O’Brien M, Nielsen KF, O’Kiely P, Forristal PD, Fuller HT, Frisvad JC (2006) Mycotoxins and other secondary metabolites produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom isolated from baled grass silage in Ireland. J Agric Food Chem 54:9268–9276

    Article  PubMed  Google Scholar 

  • O’Connor TP, O’Brien NM (2000) Nutritional aspects of cheese. In: Fox PF, Guinee T, Cogan T, McSweeney P (eds) Fundamentals of cheese science. Elsevier Applied Science, Amsterdam, pp. 504–513

    Google Scholar 

  • Ohmomo S (1982) Indole alkaloids produced by Penicillium roqueforti. J Antibact Antifung Agents 10:253–264

    CAS  Google Scholar 

  • Ohmomo S, Sato T, Utagawa T, Abe M (1975) Isolation of festuclavine and three new indole alkaloids, roquefortine A, B and C from cultures of Penicillium roqueforti. Agr. Biol Chem 39:1333–1334

    CAS  Google Scholar 

  • Ohmomo S, Oguma K, Ohashi T, Abe M (1978) Isolation of a new indole alkaloid, roquefortine D, from the cultures of Penicillium roqueforti. Agric Biol Chem 42:2387–2389

    CAS  Google Scholar 

  • Overy DP, Nielsen KF, Smedsgaard J (2005a) Roquefortine/oxaline biosynthesis pathway metabolites in Penicillium ser. Corymbifera: in planta production and implications for competitive fitness. J Chem Ecol 31:2373–2390

    Article  CAS  PubMed  Google Scholar 

  • Overy DP, Frisvad JC, Steinmeier U, Thrane U (2005b) Clarification of the agents causing blue mold storage rot up on various flower and vegetable bulbs: implications for mycotoxin contamination. Postharvest Biol Technol 35:217–221

    Article  Google Scholar 

  • Petyaev IM, Bashmakov YK (2012) Could cheese be the missing piece in the French paradox puzzle? Med Hypotheses 79:746–749

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI (2002) Biology and ecology of toxigenic Penicillium species. Adv Exp Med Biol 504:29–41

    Article  CAS  PubMed  Google Scholar 

  • Polonelli L, Lauriola L, Morace G (1982) Preliminary studies on the carcinogenic effects of Penicillium roqueforti toxin (PR toxin) on rats. Mycopathologia 78:125–127

    Article  CAS  PubMed  Google Scholar 

  • Polonsky J, Merrien MA, Scott PM (1977) Roquefortine and isofumigaclavine A, alkaloids from Penicillium roqueforti. Ann Nutr Aliment 31:963–968

    CAS  PubMed  Google Scholar 

  • Proctor RH, Hohn TM (1993) Aristolochene synthase. Isolation, characterization, and bacterial expression of a sesquiterpenoid biosynthetic gene (Ari1) from Penicillium roqueforti. J Biol Chem 268:4543–4548

    CAS  PubMed  Google Scholar 

  • Rand TG, Giles S, Flemming J, Miller JD, Puniani E (2005) Inflammatory and cytotoxic responses in mouse lungs exposed to purified toxins from building isolated Penicillium brevicompactum Dierckx and P. chrysogenum Thom. Toxicol Sci 87:213–222

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen RR, Storm IMLD, Rasmussen PH, Smedsgaard J, Nielsen KF (2010) Multi-mycotoxin analysis of maize silage by LC-MS/MS. Anal Bioanal Chem 397 (2):765–776

  • Rasmussen RR, Rasmussen PH, Larsen TO, Bladt TT, Binderup ML (2011) In vitro cytotoxicity of fungi spoiling maize silage. Food Chem Toxicol 49:31–44

    Article  CAS  PubMed  Google Scholar 

  • Regueira TB, Kildegaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J (2011) Molecular basis for mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol 77:3035–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rho MC, Toyoshima M, Hayashi M, Uchida R, Shiomi K, Komiyama K, Omura S (1998) Enhancement of drug accumulation by andrastin A produced by Penicillium sp. FO-3929 in vincristine-resistant KB cells. J Antibiot (Tokyo) 51:68–72

    Article  CAS  Google Scholar 

  • Riclea R, Dickschat JS (2015) Identification of intermediates in the biosynthesis of PR toxin by Penicillium roqueforti. Angew Chem Int Ed Engl 54:12167–12170

    Article  CAS  PubMed  Google Scholar 

  • Ries MI, Ali H, Lankhorst PP, Hankemeier T, Bovenberg RA, Driessen AJ, Vreeken RJ (2013) Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J Biol Chem 288:37289–37295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rundberget T, Skaar I, Flaoyen A (2004) The presence of Penicillium and Penicillium mycotoxins in food wastes. Int J Food Microbiol 90:181–188

    Article  CAS  PubMed  Google Scholar 

  • Schneweis I, Meyer K, Hörmansdorfer S, Bauer J (2000) Mycophenolic acid in silage. Appl Environ Microbiol 66:3639–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch U, Luthy J, Schlatter C (1984) Mycotoxins in mold-ripened cheese. Mitt Geb Lebensmittelunters Hyg 74:50–59

    Google Scholar 

  • Scott PM (1981) Toxins of Penicillium species used in cheese manufacture. J Food Prot 44:702–710

    CAS  Google Scholar 

  • Scott PM, Kanhere SR (1979) Instability of PR toxin in blue cheese. J Assoc Off Anal Chem 62:141–147

    CAS  PubMed  Google Scholar 

  • Scott PM, Kennedy BP, Harwig J, Blanchfield BJ (1977) Study of conditions of production of roquefortine and other metabolites of Penicillin roqueforti. Appl Environ Microbiol 33:249–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teuber M, Engel G (1983) Low risk of mycotoxin production in cheese. Microbiol Aliment Nutr 1:193–197

    CAS  Google Scholar 

  • Tüller G, Armbruster G, Wiedenmann S, Hnichen T, Schams D, Bauer J (1998) Occurrence of roquefortine in silage. Toxicological relevance to sheep. J Anim Physiol Anim Nutr 80:246–249

    Article  Google Scholar 

  • Uchida R, Shiomi K, Inokoshi J, Tanaka H, Iwai Y, Omura S (1996a) Andrastin D, novel protein farnesyltransferase inhibitor produced by Penicillium sp. FO-3929. J Antibiot (Tokyo) 49:1278–1280

    Article  CAS  Google Scholar 

  • Uchida R, Shiomi K, Inokoshi J, Sunazuka T, Tanaka H, Iwai Y, Takayanagi H, Omura S (1996b) Andrastins A-C, new protein farnesyltransferase inhibitors produced by Penicillium sp. FO-3929. II. Structure elucidation and biosynthesis. J Antibiot (Tokyo) 49:418–424

    Article  CAS  Google Scholar 

  • Ueno Y, Kubota K, Ito T, Nakamura Y (1978) Mutagenicity of carcinogenic mycotoxins in Salmonella typhimurium. Cancer Res 38:3536–3542

    Google Scholar 

  • Wagener RE, Davis ND, Diener UL (1980) Penitrem A and Roquefortine production by Penicillium commune. Appl Environ Microbiol 39:882–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei RD, Schnoes HK, Hart PA, Strong FM (1975) The structure of PR-toxin, a mycotoxin from Penicillium roqueforti. Tetrahedron 31:109–114

    Article  CAS  Google Scholar 

  • Wei RD, Ong TM, Whong WZ, Frezza D, Bronzetti G, Zeiger E (1979) Genetic effects of PR toxin in eukaryotic microorganisms. Environ Mutagen 1:45–53

    Article  CAS  PubMed  Google Scholar 

  • Wei YH, Ding WH, Wei RD (1984) Biochemical effects of PR toxin on rat liver mitochondrial respiration and oxidative phosphorylation. Arch Biochem Biophys 230:400–411

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Cao S, Qiu L, Qi F, Li Z, Yang Y, Huang S, Bai F, Liu C, Wan X, Li S (2015) Functional characterization of MpaG’, the O-methyltransferase involved in the biosynthesis of mycophenolic acid. Chembiochem 16:565–569

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of the information included in this article has been obtained directly from results published by our group in different research works, which have been supported by a project of the European Union (Sixth Frame Programme: Eurofungbase LSSG-CT-2005-018964). We especially thank K. Kosalková and P. Liras for valuable scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos García-Estrada.

Ethics declarations

This article does not contain any studies with human participants or animals, performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Estrada, C., Martín, JF. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl Microbiol Biotechnol 100, 8303–8313 (2016). https://doi.org/10.1007/s00253-016-7788-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7788-x

Keywords

Navigation