Skip to main content
Log in

Characterization of AvaR1, a butenolide-autoregulator receptor for biosynthesis of a Streptomyces hormone in Streptomyces avermitilis

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptomyces hormones, sometimes called as autoregulators, are important signaling molecules to trigger secondary metabolism across many Streptomyces species. We recently identified a butenolide-type autoregulator (termed avenolide) as a new class of Streptomyces hormone from Streptomyces avermitilis that produces important anthelmintic agent avermectin. Avenolide triggers the production of avermectin with minimum effective concentration of nanomolar. Here, we describe the characterization of avaR1 encoding an avenolide receptor in the regulation of avermectin production and avenolide biosynthesis. The disruption of avaR1 resulted in transcriptional derepression of avenolide biosynthetic gene with an increase in avenolide production, with no change in the avermectin production profile. Moreover, the avaR1 mutant showed increased transcription of avaR1. Together with clear DNA-binding capacity of AvaR1 toward avaR1 upstream region, it suggests that AvaR1 negatively controls the expression of avaR1 through the direct binding to the promoter region of avaR1. These findings revealed that the avenolide receptor AvaR1 functions as a transcriptional repressor for avenolide biosynthesis and its own synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arakawa K, Tsuda N, Taniguchi A, Kinashi H (2012) The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei. Chembiochem 13:1447–1457. doi:10.1002/cbic.201200149

    Article  CAS  PubMed  Google Scholar 

  • Aroonsri A, Kitani S, Hashimoto J, Kosone I, Izumikawa M, Komatsu M, Fujita N, Takahashi Y, Shin-ya K, Ikeda H, Nihira T (2012) Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae. Appl Environ Microbiol 78:8015–8024. doi:10.1128/AEM.02355-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65:385–395. doi:10.1038/ja.2012.27

    Article  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215. doi:10.1016/j.mib.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  • Bignell DRD, Bate N, Cundliffe E (2007) Regulation of tylosin production: role of a TylP-interactive ligand. Mol Microbiol 63:838–847. doi:10.1111/j.1365-2958.2006.05541.x

    Article  CAS  PubMed  Google Scholar 

  • Bunet R, Mendes MV, Rouhier N, Pang X, Hotel L, Leblond P, Aigle B (2008) Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand. J Bacteriol 190:3293–3305. doi:10.1128/JB.01989-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Lee C, Hwang Y, Kinoshita H, Nihira T (2004) Cloning and functional analysis by gene disruption of a gene encoding a γ-butyrolactone autoregulator receptor from Kitasatospora setae. J Bacteriol 186:3423–3430. doi:10.1128/JB.186.11.3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cundliffe E (2008) Control of tylosin biosynthesis in Streptomyces fradiae. J Microbiol Biotechnol 18:1485–1491

    CAS  PubMed  Google Scholar 

  • Folcher M, Gaillard H, Nguyen LT, Nguyen KT, Lacroix P, Bamas-Jacques N, Rinkel M, Thompson CJ (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306. doi:10.1074/jbc.M101109200

    Article  CAS  PubMed  Google Scholar 

  • Horinouchi S (2007) Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci Biotechnol Biochem 71:283–299. doi:10.1271/bbb.60627

    Article  CAS  PubMed  Google Scholar 

  • Hsiao NH, Nakayama S, Merlo ME, de Vries M, Bunet R, Kitani S, Nihira T, Takano E (2009) Analysis of two additional signaling molecules in Streptomyces coelicolor and the development of a butyrolactone-specific reporter system. Chem Biol 16:951–960. doi:10.1016/j.chembiol.2009.08.010

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci U S A 96:9509–9514. doi:10.1073/pnas.96.17.9509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531. doi:10.1038/nbt820

    Article  PubMed  Google Scholar 

  • Kang JG, Hahn MY, Ishihama A, Roe JH (1997) Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res 25:2566–2573. doi:10.1093/nar/25.13.2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato J, Miyahisa I, Mashiko M, Ohnishi Y, Horinouchi S (2004) A single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus. J Bacteriol 186:2206–2211. doi:10.1128/JB.186.7.2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kinoshita H, Ipposhi H, Okamoto S, Nakano H, Nihira T, Yamada Y (1997) Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J Bacteriol 179:6986–6993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitani S, Kinoshita H, Nihira T, Yamada Y (1999) In vitro analysis of the butyrolactone autoregulator receptor protein (FarA) of Streptomyces lavendulae FRI-5 reveals that FarA acts as a DNA-binding transcriptional regulator that controls its own synthesis. J Bacteriol 181:5081–5084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitani S, Yamada Y, Nihira T (2001) Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J Bacteriol 183:4357–4363. doi:10.1128/JB.183.14.4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitani S, Iida A, Izumi T, Maeda A, Yamada Y, Nihira T (2008) Identification of genes involved in the butyrolactone autoregulator cascade that modulates secondary metabolism in Streptomyces lavendulae FRI-5. Gene 425:9–16. doi:10.1016/j.gene.2008.07.043

    Article  CAS  PubMed  Google Scholar 

  • Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H, Nishitomi K, Uchida M, Nagamitsu T, Omura S, Ikeda H, Nihira T (2011) Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci U S A 108:16410–16415. doi:10.1073/pnas.1113908108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Tsuda M, Omura S, Oikawa H, Ikeda H (2008) Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proc Natl Acad Sci U S A 105:7422–7427. doi:10.1073/pnas.0802312105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107:2646–2451. doi:10.1073/pnas.0914833107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurniawan YN, Kitani S, Iida A, Maeda A, a Nijeholt JL, Lee YJ, Nihira T (2015) Regulation of production of the blue pigment indigoidine by the pseudo γ-butyrolactone receptor FarR2 in Streptomyces lavendulae FRI-5. J Biosci Bioeng 121:372–379. doi:10.1016/j.jbiosc.2015.08.013

    Article  PubMed  Google Scholar 

  • Miyamoto KT, Kitani S, Komatsu M, Ikeda H, Nihira T (2011) The autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis. Microbiology 157:2266–2275. doi:10.1099/mic.0.048371-0

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Takehara E, Nihira T, Yamada Y (1998) Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol 180:3317–3322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano H, Lee CK, Nihira T, Yamada Y (2000) A null mutant of the Streptomyces virginiae barA gene encoding a butyrolactone autoregulator receptor and its phenotypic and transcriptional analysis. J Biosci Bioeng 90:204–207

    Article  CAS  PubMed  Google Scholar 

  • Natsume R, Ohnishi Y, Senda T, Horinouchi S (2004) Crystal structure of a γ-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J Mol Biol 336:409–419. doi:10.1016/j.jmb.2003.12.040

    Article  CAS  PubMed  Google Scholar 

  • Ningsih F, Kitani S, Fukushima E, Nihira T (2011) VisG is essential for biosynthesis of virginiamycin S, a streptogramin type B antibiotic, as a provider of the nonproteinogenic amino acid phenylglycine. Microbiology 157:3213–3220. doi:10.1099/mic.0.050203-0

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Nakamura K, Nihira T, Yamada Y (1995) Virginiae butanolide binding protein from Streptomyces virginiae: evidence that VbrA is not the virginiae butanolide binding protein and reidentification of the true binding protein. J Biol Chem 270:12319–12326

    Article  CAS  PubMed  Google Scholar 

  • Onaka H, Horinouchi S (1997) DNA-binding activity of the A-factor receptor protein and its recognition DNA sequences. Mol Microbiol 24:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S (1995) Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J Bacteriol 177:6083–6092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pulsawat N, Kitani S, Kinoshita H, Lee CK, Nihira T (2007) Identification of the bkdAB gene cluster, a plausible source of the starter-unit for virginiamycin M production in Streptomyces virginiae. Arch Microbiol 187:459–466. doi:10.1007/s00203-007-0212-2

    Article  CAS  PubMed  Google Scholar 

  • Pulsawat N, Kitani S, Fukushima E, Nihira T (2009) Hierarchical control of virginiamycin production in Streptomyces virginiae by three pathway-specific regulators: VmsS, VmsT and VmsR. Microbiology 155:1250–1259. doi:10.1099/mic.0.022467-0

    Article  CAS  PubMed  Google Scholar 

  • Santamarta I, Pérez-Redondo R, Lorenzana LM, Martín JF, Liras P (2005) Different proteins bind to the butyrolactone receptor protein ARE sequence located upstream of the regulatory ccaR gene of Streptomyces clavuligerus. Mol Microbiol 56:824–835. doi:10.1111/j.1365-2958.2005.04581.x

    Article  CAS  PubMed  Google Scholar 

  • Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama M, Onaka H, Nakagawa T, Horinouchi S (1998) Site-directed mutagenesis of the A-factor receptor protein: Val-41 important for DNA-binding and Trp-119 important for ligand-binding. Gene 222:133–144

    Article  CAS  PubMed  Google Scholar 

  • Takano E (2006) γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294. doi:10.1016/j.mib.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  • Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ (2001) A complex role for the γ-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028

    Article  CAS  PubMed  Google Scholar 

  • Ulanova D, Kitani S, Fukusaki E, Nihira T (2013) SdrA, a new DeoR family regulator involved in Streptomyces avermitilis morphological development and antibiotic production. Appl Environ Microbiol 79:7916–7921. doi:10.1128/AEM.02843-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-B, Zhang F, Pu J-Y, Zhao J, Zhao Q-F, Tang G-L (2014) Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain. Biotechnol Lett 36:813–819. doi:10.1007/s10529-013-1416-y

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y (1995) Butyrolactone autoregulators, inducers of secondary metabolites, in Streptomyces. Actinomycetologica 9:57–65

    Article  Google Scholar 

Download references

Acknowledgments

This study was performed by S.P.S. in partial fulfillment of the requirements for a Ph.D. This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 15K07358) from the Japan Society for the Promotion of Science (JSPS) to S.K., in part by a Grant-in-Aid for Scientific Research (B) (No. 24310157) from JSPS to T.N. and S.K., and by a scholarship from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to S.P.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Nihira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, S.P., Kitani, S., Miyamoto, K.T. et al. Characterization of AvaR1, a butenolide-autoregulator receptor for biosynthesis of a Streptomyces hormone in Streptomyces avermitilis . Appl Microbiol Biotechnol 100, 9581–9591 (2016). https://doi.org/10.1007/s00253-016-7781-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7781-4

Keywords

Navigation