Skip to main content

Advertisement

Log in

Microorganisms meet solid minerals: interactions and biotechnological applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrusci C, Martín-González A, Del Amo A, Catalina F, Collado J, Platas G (2005) Isolation and identification of bacteria and fungi from cinematographic films. Int Biodeterior Biodegrad 56(1):58–68

    Article  CAS  Google Scholar 

  • Baek G, Kim J, Cho K, Bae H, Lee C (2015) The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation. Appl Microbiol Biotechnol 99(23):10355–10366

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44(2):139–152

    Article  CAS  PubMed  Google Scholar 

  • Bartrons M, Catalan J, Casamayor EO (2012) High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes. Microb Ecol 64(4):860–869

    Article  PubMed  Google Scholar 

  • Belchik SM, Kennedy DW, Dohnalkova AC, Wang Y, Sevinc PC, Wu H, Lin Y, Lu HP, Fredrickson JK, Shi L (2011) Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 77(12):4035–4041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertron A (2014) Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Mater Struct 47(11):1787–1806

    Article  CAS  Google Scholar 

  • Bonificio WD, Clarke DR (2014) Bacterial recovery and recycling of tellurium from tellurium-containing compounds by Pseudoalteromonas sp. EPR3. J Appl Microbiol 117(5):1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Borrego S, Guiamet P, Gómez de Saravia S, Batistini P, Garcia M, Lavin P, Perdomo I (2010) The quality of air at archives and the biodeterioration of photographs. Int Biodeterior Biodegrad 64(2):139–145

    Article  CAS  Google Scholar 

  • Brisson VL, Zhuang WQ, Alvarez-Cohen L (2016) Bioleaching of rare earth elements from monazite sand. Biotechnol Bioeng 113(2):339–348

    Article  CAS  PubMed  Google Scholar 

  • Cabaj A, Kosakowska A (2009) Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea. Microbiol Res 164(5):570–577

    Article  CAS  PubMed  Google Scholar 

  • Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C (2007) Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ 385(1–3):172–181

    Article  CAS  PubMed  Google Scholar 

  • Cappitelli F, Abbruscato P, Foladori P, Zanardini E, Ranalli G, Principi P, Villa F, Polo A, Sorlini C (2009) Detection and elimination of cyanobacteria from frescoes: the case of the St. Brizio Chapel (Orvieto Cathedral, Italy). Microb Ecol 57(4):633–639

    Article  CAS  PubMed  Google Scholar 

  • Chen T-H, Wang J, Zhou Y-F, Yue Z-B, Xie Q-Q, Pan M (2014) Synthetic effect between iron oxide and sulfate mineral on the anaerobic transformation of organic substance. Bioresour Technol 151:1–5

    Article  CAS  PubMed  Google Scholar 

  • Chenu C, Roberson EB (1996) Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol Biochem 28(7):877–884

    Article  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745

    Article  CAS  PubMed  Google Scholar 

  • Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Curutchet G, Donati E, Oliver C, Pogliani C, Viera MR (2001) [11] Development of Thiobacillus biofilms for metal recovery. In: Ron JD (ed) Methods in enzymology, vol 337. Academic, pp. 171–186

  • DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392

    Article  CAS  Google Scholar 

  • Ding Y, Peng N, Du Y, Ji L, Cao B (2014) Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl Environ Microbiol 80(4):1498–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich HL (1996) How microbes influence mineral growth and dissolution. Chem Geol 132(1–4):5–9

    Article  CAS  Google Scholar 

  • Ercole C, Cacchio P, Botta AL, Centi V, Lepidi A (2007) Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microsc Microanal 13(01):42–50

    Article  CAS  PubMed  Google Scholar 

  • Ercole C, Bozzelli P, Altieri F, Cacchio P, Del Gallo M (2012) Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria. Microsc Microanal 18(04):829–839

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73(2):291–296

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, Gorby YA (1996) Environmental processes mediated by iron-reducing bacteria. Curr Opin Biotechnol 7(3):287–294

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6(8):592–603

    Article  CAS  PubMed  Google Scholar 

  • Frey B, Rieder SR, Brunner I, Plötze M, Koetzsch S, Lapanje A, Brandl H, Furrer G (2010) Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution. Appl Environ Microbiol 76(14):4788–4796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigaard N-U, Dahl C (2008) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiol 54:103–200

    Article  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  PubMed  Google Scholar 

  • Ge Z, Li J, Xiao L, Tong Y, He Z (2014) Recovery of electrical energy in microbial fuel cells. Environ Technol Lett 1(2):137–141

    Article  CAS  Google Scholar 

  • Gleeson D, Clipson N, Melville K, Gadd G, McDermott F (2005) Characterization of fungal community structure on a weathered pegmatitic granite. Microb Ecol 50(3):360–368

    Article  PubMed  Google Scholar 

  • Gleeson D, Kennedy N, Clipson N, Melville K, Gadd G, McDermott F (2006) Characterization of bacterial community structure on a weathered pegmatitic granite. Microb Ecol 51(4):526–534

    Article  PubMed  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9(7):1613–1631

    Article  CAS  PubMed  Google Scholar 

  • Halmann M, Steinfeld A (2006) Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal. Energy 31(10):1533–1541

    Article  CAS  Google Scholar 

  • Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48(3):424–434

    Article  CAS  Google Scholar 

  • Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Anoxygenic photosynthetic bacteria. Springer, pp. 1–15

  • Jenkinson HF, Lappin-Scott HM (2001) Biofilms adhere to stay. Trends Microbiol 9(1):9–10

    Article  CAS  PubMed  Google Scholar 

  • Jonkers H (2007) Self healing concrete: a biological approach. In: van der Zwaag S (ed) Self healing materials. Springer series in materials science, vol 100. Springer, Dordrecht, pp 195–204

    Chapter  Google Scholar 

  • Jonkers HM, Schlangen E (2008) A two component bacteria-based self-healing concrete. In: Concrete repair, rehabilitation and retrofitting II. CRC Press, pp. 119–120

  • Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114(4):446–452

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Nakamura R, Kai F, Watanabe K, Hashimoto K (2010) Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals. Environ Microbiol 12(12):3114–3123

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012a) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14(7):1646–1654

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012b) Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci U S A 109(25):10042–10046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerfahi D, Hall-Spencer JM, Tripathi BM, Milazzo M, Lee J, Adams JM (2014) Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy. Microb Ecol 67(4):819–828

    Article  CAS  PubMed  Google Scholar 

  • Kleiv R, Sandvick K (2000) Using tailings as heavy metal adsorbents—the effect of buffering capacity. Miner Eng 13(7):719–728

    Article  CAS  Google Scholar 

  • Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolisms. Elements 7(2):89–93

    Article  CAS  Google Scholar 

  • Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861

    Article  CAS  PubMed  Google Scholar 

  • Lacroix E, Brovelli A, Barry DA, Holliger C (2014a) Use of silicate minerals for pH control during reductive dechlorination of chloroethenes in batch cultures of different microbial consortia. Appl Environ Microbiol 80(13):3858–3867

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacroix E, Brovelli A, Maillard J, Rohrbach-Brandt E, Barry DA, Holliger C (2014b) Use of silicate minerals for long-term pH control during reductive dechlorination of high tetrachloroethene concentrations in continuous flow-through columns. Sci Total Environ 482:23–35

    Article  PubMed  Google Scholar 

  • Lee M, Odom J, Buchanan R Jr (1998) New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field. Annu Rev Microbiol 52(1):423–452

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Wan C, Liu X, Lei Z, Lee D-J, Zhang Y, Tay JH, Zhang Z (2013) Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity. Appl Microbiol Biotechnol 97(24):10575–10583

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55(2):259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24(3):385–390

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. In: Advances in microbial physiology, vol 49. Academic, pp. 219–286

  • Lünsdorf H, Erb R, Abraham W, Timmis K (2000) ‘Clay hutches’: a novel interaction between bacteria and clay minerals. Environ Microbiol 2(2):161–168

    Article  PubMed  Google Scholar 

  • Lv Z, Xie D, Yue X, Feng C, Wei C (2012) Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. J Power Sources 210:26–31

    Article  CAS  Google Scholar 

  • Lyautey E, Lacoste B, Ten-Hage L, Rols J-L, Garabetian F (2005) Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation. Water Res 39(2):380–388

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Wang J, Chen T, Shi C, Peng S, Yue Z (2015) Iron-oxide-promoted anaerobic process of the aquatic plant of curly leaf pondweed. Energy Fuel 29(7):4356–4360

    Article  CAS  Google Scholar 

  • Madigan MT, Jung DO (2009) An overview of purple bacteria: systematics, physiology, and habitats. In: The purple phototrophic bacteria. Springer, pp. 1–15

  • Magniont C, Coutand M, Bertron A, Cameleyre X, Lafforgue C, Beaufort S, Escadeillas G (2011) A new test method to assess the bacterial deterioration of cementitious materials. Cem Concr Res 41(4):429–438

    Article  CAS  Google Scholar 

  • Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral–microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157(4):473–481

    Article  CAS  PubMed  Google Scholar 

  • Marini L (2006) Geological sequestration of carbon dioxide: thermodynamics, kinetics, and reaction path modeling, vol 11. Elsevier

  • Matlakowska R, Sklodowska A (2009) The culturable bacteria isolated from organic-rich black shale potentially useful in biometallurgical procedures. J Appl Microbiol 107(3):858–866

    Article  CAS  PubMed  Google Scholar 

  • Matlakowska R, Narkiewicz W, Sklodowska A (2010) Biotransformation of organic-rich copper-bearing black shale by indigenous microorganisms isolated from Lubin copper mine (Poland). Environ Sci Technol 44(7):2433–2440

    Article  CAS  PubMed  Google Scholar 

  • Matlakowska R, Skłodowska A, Nejbert K (2012) Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: implication for dissolution and precipitation of minerals in deep underground mine. FEMS Microbiol Ecol 81(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Mishra D, Kim D-J, Ralph DE, Ahn J-G, Rhee Y-H (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manag 28(2):333–338

    Article  CAS  PubMed  Google Scholar 

  • Montalvo S, Díaz F, Guerrero L, Sánchez E, Borja R (2005) Effect of particle size and doses of zeolite addition on anaerobic digestion processes of synthetic and piggery wastes. Process Biochem 40(3):1475–1481

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Lens PN (2015) Selenium biomineralization for biotechnological applications. Trends Biotechnol 33(6):323–330

    Article  CAS  PubMed  Google Scholar 

  • Nancharaiah Y, Mohan SV, Lens P (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155

    Article  CAS  PubMed  Google Scholar 

  • Natarajan G, Ting Y-P (2014) Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 152(0):80–85

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58(2):439–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nealson KH, Myers CR, Wimpee BB (1991) Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep Sea Res Part A Oceanogr Res Pap 38. Suppl 2(0):S907–S920

    Google Scholar 

  • Neilands J (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Papida S, Murphy W, May E (2000) Enhancement of physical weathering of building stones by microbial populations. Int Biodeterior Biodegrad 46(4):305–317

    Article  CAS  Google Scholar 

  • Philips J, Maes N, Springael D, Smolders E (2013) Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells. J Contam Hydrol 147:25–33

    Article  CAS  PubMed  Google Scholar 

  • Polo A, Gulotta D, Santo N, Di Benedetto C, Fascio U, Toniolo L, Villa F, Cappitelli F (2012) Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: a molecular study. Biofouling 28(10):1093–1106

    Article  PubMed  Google Scholar 

  • Qu Y, Lian B (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol 136:16–23

    Article  CAS  PubMed  Google Scholar 

  • Richardson DJ, Butt JN, Clarke TA (2013) Controlling electron transfer at the microbe–mineral interface. Proc Natl Acad Sci U S A 110(19):7537–7538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson C, Barry D, McCarty PL, Gerhard JI, Kouznetsova I (2009) pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Sci Total Environ 407(16):4560–4573

    Article  CAS  PubMed  Google Scholar 

  • Salek S, van Turnhout A, Kleerebezem R, van Loosdrecht M (2015) pH control in biological systems using calcium carbonate. Biotechnol Bioeng 112(5):905–913

    Article  CAS  PubMed  Google Scholar 

  • Santo Domingo JW, Revetta RP, Iker B, Gomez-Alvarez V, Garcia J, Sullivan J, Weast J (2011) Molecular survey of concrete sewer biofilm microbial communities. Biofouling 27(9):993–1001

    Article  CAS  PubMed  Google Scholar 

  • Schlegel HG (1993) General microbiology, 7th edn. Cambridge University Press

  • Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100(6):2591–2602. doi:10.1007/s00253-016-7316-z

    Article  CAS  PubMed  Google Scholar 

  • Seiffert F, Bandow N, Bouchez J, von Blanckenburg F, Gorbushina AA (2014) Microbial colonization of bare rocks: laboratory biofilm enhances mineral weathering. Proc Earth Planet Sci 10(0):123–129

    Article  CAS  Google Scholar 

  • Spiers AJ, Bohannon J, Gehrig SM, Rainey PB (2003) Biofilm formation at the air–liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Sun J-Z, Kingori GP, Si R-W, Zhai D-D, Liao Z-H, Sun D-Z, Zheng T, Yong Y-C (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol 71(6):801–809

    Article  CAS  PubMed  Google Scholar 

  • Tay SB, Natarajan G, Rahim MNBA, Tan HT, Chung MCM, Ting YP, Yew WS (2013) Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum. Sci Report 3:2236

  • Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. In: Advances in microbial ecology. Springer, pp. 41–84

  • Tolli J, King GM (2005) Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils. Appl Environ Microbiol 71(12):8411–8418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuson HH, Weibel DB (2013) Bacteria-surface interactions. Soft Matter 9(17):4368–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Calvaruso C, Turpault M-P, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387

    Article  CAS  PubMed  Google Scholar 

  • Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40(1):157–166

    Article  Google Scholar 

  • Vandieken V, Pester M, Finke N, Hyun J-H, Friedrich MW, Loy A, Thamdrup B (2012) Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME J 6(11):2078–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viles HA, Gorbushina AA (2003) Soiling and microbial colonisation on urban roadside limestone: a three year study in Oxford, England. Build Environ 38(9–10):1217–1224

    Article  Google Scholar 

  • Vollertsen J, Nielsen AH, Jensen HS, Wium-Andersen T, Hvitved-Jacobsen T (2008) Corrosion of concrete sewers—the kinetics of hydrogen sulfide oxidation. Sci Total Environ 394(1):162–170

    Article  CAS  PubMed  Google Scholar 

  • Wakelin SA, Anand RR, Reith F, Gregg AL, Noble RR, Goldfarb KC, Andersen GL, DeSantis TZ, Piceno YM, Brodie EL (2012) Bacterial communities associated with a mineral weathering profile at a sulphidic mine tailings dump in arid Western Australia. FEMS Microbiol Ecol 79(2):298–311

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31(8):1796–1807

    Article  PubMed  Google Scholar 

  • Warren LA (2005) Biofilms and metal geochemistry: the relevance of micro-organism-induced geochemical transformations. In: Micro-organisms and earth systems—advances in geomicrobiology. Cambridge University Press

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46(4):343–368

    Article  CAS  Google Scholar 

  • Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63(9):1405–1419

    Article  CAS  Google Scholar 

  • Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33(7):763–770

    Article  CAS  Google Scholar 

  • Yang T, Xu Z, Wen J, Yang L (2009) Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 97(1–2):29–32

    Article  CAS  Google Scholar 

  • Yang P-B, Tian Y, Wang Q, Cong W (2015) Effect of different types of calcium carbonate on the lactic acid fermentation performance of Lactobacillus lactis. Biochem Eng J 98:38–46

    Article  CAS  Google Scholar 

  • Yong Y-C, Wu X-Y, Sun J-Z, Cao Y-X, Song H (2015) Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. Chemosphere 140:18–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based on research/work supported by the Singapore Ministry of National Development and National Research Foundation under L2 NIC Award No. L2NICCFP1-2013-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Cao.

Ethics declarations

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, D.H.P., Kumar, A. & Cao, B. Microorganisms meet solid minerals: interactions and biotechnological applications. Appl Microbiol Biotechnol 100, 6935–6946 (2016). https://doi.org/10.1007/s00253-016-7678-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7678-2

Keywords

Navigation