Skip to main content

Advertisement

Log in

High Bacterial Diversity in Epilithic Biofilms of Oligotrophic Mountain Lakes

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Romaní AM, Guasch H, Muñoz I, Ruana J, Vilalta E, Schwartz T, Emtiazi F, Sabater S (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microb Ecol 47(4):316–328. doi:10.1007/s00248-003-2019-2

    Article  PubMed  Google Scholar 

  2. Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Micro 5(1):76–81. http://www.nature.com/nrmicro/journal/v5/n1/suppinfo/nrmicro1556_S1.html

    Google Scholar 

  3. Hecky RE, Hesslein RH (1995) Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Am Bentholl Soc 14(4):631–653

    Article  Google Scholar 

  4. Vadeboncoeur Y, Peterson G, Vander Zanden MJ, Kalff J (2008) Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology 89(9):2542–2552. doi:10.1890/07-1058.1

    Article  PubMed  Google Scholar 

  5. Lindström ES (1998) Bacterioplankton community composition in a boreal forest lake. FEMS Microbiol Ecol 27(2):163–174. doi:10.1111/j.1574-6941.1998.tb00534.x

    Article  Google Scholar 

  6. Pernthaler J, Glockner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64(11):4299–4306

    PubMed  CAS  Google Scholar 

  7. Glockner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66(11):5053–5065. doi:10.1128/aem.66.11.5053-5065.2000

    Article  PubMed  CAS  Google Scholar 

  8. Casamayor EO, Schafer H, Baneras L, Pedros-Alio C, Muyzer G (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66(2):499–508

    Article  PubMed  CAS  Google Scholar 

  9. Pearce DA, van der Gast CJ, Woodward K, Newsham KK (2005) Significant changes in the bacterioplankton community structure of a maritime Antarctic freshwater lake following nutrient enrichment. Microbiology 151(10):3237–3248. doi:10.1099/mic.0.27258-0

    Article  PubMed  CAS  Google Scholar 

  10. Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65(7):3192–3204

    PubMed  CAS  Google Scholar 

  11. Cebron A, Coci M, Garnier J, Laanbroek HJ (2004) Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: impact of Paris wastewater effluents. Appl Environ Microbiol 70(11):6726–6737. doi:10.1128/aem.70.11.6726-6737.2004

    Article  PubMed  CAS  Google Scholar 

  12. Besemer K, Moeseneder MM, Arrieta JM, Herndl GJ, Peduzzi P (2005) Complexity of bacterial communities in a river–floodplain system (Danube, Austria). Appl Environ Microbiol 71(2):609–620. doi:10.1128/aem.71.2.609-620.2005

    Article  PubMed  CAS  Google Scholar 

  13. Battin TJ, Wille A, Psenner R, Richter A (2004) Large-scale environmental controls on microbial biofilms in high-alpine streams. Biogeosciences 1:159–171

    Article  CAS  Google Scholar 

  14. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Micro 6(3):199–210

    Article  CAS  Google Scholar 

  15. Fike DA, Gammon CL, Ziebis W, Orphan VJ (2008) Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. ISME J 2(7):749–759. http://www.nature.com/ismej/journal/v2/n7/suppinfo/ismej200839s1.html

    Google Scholar 

  16. Camarero L, Catalan J (1996) Variability in the chemistry of precipitation in the Pyrenees (northeastern Spain): dominance of storm origin and lack of altitude influence. JGR 101(D23):29491–29498

    Article  CAS  Google Scholar 

  17. Hervas A, Camarero L, Reche I, Casamayor EO (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ Microbiol 11(6):1612–1623. doi:10.1111/j.1462-2920.2009.01926.x

    Article  PubMed  Google Scholar 

  18. Fernandez P, Grimalt JO (2003) On the global distribution of persistent organic pollutants. Chimia 57(9):514–521

    Article  CAS  Google Scholar 

  19. Catalan J, Camarero L, Felip M, Pla S, Ventura M, Buchaca T, Bartumeus F, Mendoza G, Miró A, Casamayor EO, Medina-Sánchez JM, Bacardit M, Altuna M, Bartrons M, Díaz de Quijano D (2006) High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25(1–2):551–584

    Google Scholar 

  20. Parker BR, Vinebrooke RD, Schindler DW (2008) Recent climate extremes alter alpine lake ecosystems. Proc Natl Acad Sci U S A 105(35):12927–12931

    Article  PubMed  CAS  Google Scholar 

  21. Rose KC, Williamson CE, Saros JE, Sommaruga R, Fischer JM (2009) Differences in UV transparency and thermal structure between alpine and subalpine lakes: implications for organisms. Photochem Photobiol Sci 8(9):1244–1256

    Article  PubMed  CAS  Google Scholar 

  22. Catalan J, Barbieri MG, Bartumeus F, Bitusík P, Botev I, Brancelj A, Cogalniceanu D, Manca M, Marchetto A, Ognjanova-Rumenova N, Pla S, Rieradevall M, Sorvari S, Stefkova E, Stuchlik E, Ventura M (2009) Ecological thresholds in European alpine lakes. Freshwat Biol 54(12):2494–2517

    Article  CAS  Google Scholar 

  23. Bartrons M, Camarero L, Catalan J (2010) Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees. Biogeosciences 7:1469–1479. doi:10.5194/bg-7-1469-2010

    Article  CAS  Google Scholar 

  24. Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotter AF, Barbieri A, Stuchlik E, Lien L, Bitusík P, Buchaca T, Camarero L, Goudsmit GH, Kopacek J, Lemcke G, Livingstone DM, Müller B, Rautio M, Sisko M, Sorvari S, Sporka F, Strunecky O, Toro M (2002) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46

    Article  Google Scholar 

  25. Steinman AD, Lamberti GA (1996) Biomass and pigments of benthic algae. Methods in stream ecology. Academic Press, Elsevier

    Google Scholar 

  26. Dumestre J-F, Casamayor EO, Massana R, Pedrós-Alió C (2002) Changes in bacterial and archaeal assemblages in an equatorial river induced by the water eutrophication of Petit Saut dam reservoir (French Guiana). Aquat Microb Ecol 26(3):209–221. doi:10.3354/ame026209

    Article  Google Scholar 

  27. Casamayor EO, Pedros-Alio C, Muyzer G, Amann R (2002) Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptations. Appl Environ Microbiol 68(4):1706–1714

    Article  PubMed  CAS  Google Scholar 

  28. Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49(2):281–293. doi:10.1016/j.femsec.2004.04.002

    Article  PubMed  CAS  Google Scholar 

  29. Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504

    Article  PubMed  CAS  Google Scholar 

  30. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20(14):2317–2319

    Article  PubMed  CAS  Google Scholar 

  31. Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65(9):3982–3989

    PubMed  CAS  Google Scholar 

  32. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10

    Article  Google Scholar 

  33. Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169(3):E68–E83

    Article  Google Scholar 

  34. Barberan A, Casamayor EO (2010) Global phylogenetic community structure and β-diversity patterns in surface bacterioplankton metacommunities. Aquat Microb Ecol 59(1):1–10. doi:10.3354/ame01389

    Article  Google Scholar 

  35. Hervas A (2009) Bacterial dispersal on airbone Saharan dust particles: survival and colonization in alpine lakes of the Limnological Observatory of the Pyrenees. Universitat Autònoma de Barcelona, Barcelona

    Google Scholar 

  36. Llorens-Marès T, Auguet JC, Casamayor EO (2012) Winter to spring changes in bacterial community composition in the slush layers of a high-mountain lake (Lake Redon, Pyrenees). Environ Microbiol Rep 4:50–56. doi:10.1111/j.1758-2229.2011.00278.x

    Article  Google Scholar 

  37. Lipson DA (2007) Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol Ecol 59(2):418–427

    Article  PubMed  CAS  Google Scholar 

  38. Likens GE (2010) Plankton of inland waters. Academic Press, Oxford, UK

    Google Scholar 

  39. Bowen KL, Kaushik NK, Gordon AM (1998) Macroinvertebrate communities and biofilm chlorophyll on woody debris in two Canadian oligotrophic lakes. Archiv fur Hidrobiologie 141(3):257–281

    Google Scholar 

  40. Tank JL, Dodds WK (2003) Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwat Biol 48(6):1031–1049. doi:10.1046/j.1365-2427.2003.01067.x

    Article  CAS  Google Scholar 

  41. Lyautey E, Lacoste B, Ten-Hage L, Rols JL, Garabetian F (2005) Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation. Water Res 39(2–3):380–388. doi:10.1016/j.watres.2004.09.025

    Article  PubMed  CAS  Google Scholar 

  42. Anderson-Glenna MJ, Bakkestuen V, Clipson NJW (2008) Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiol Ecol 64(3):407–418. doi:10.1111/j.1574-6941.2008.00480.x

    Article  PubMed  CAS  Google Scholar 

  43. Battin TJ, Wille A, Sattler B, Psenner R (2001) Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream. Appl Environ Microbiol 67(2):799–807. doi:10.1128/aem.67.2.799-807.2001

    Article  PubMed  CAS  Google Scholar 

  44. Hempel M, Grossart H, Gross EM (2009) Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine lake. Aquat Microb Ecol 58(1):79–94. doi:10.3354/ame01353

    Article  Google Scholar 

  45. Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71(9):5551–5559

    Article  PubMed  CAS  Google Scholar 

  46. Arnds J, Knittel K, Buck U, Winkel M, Amann R (2010) Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst Appl Microbiol 33(3):139–148

    Article  PubMed  CAS  Google Scholar 

  47. Lappin-Scott HM, Costerton JW (2003) Microbial biofilms. Cambridge University Press, Cambridge, England

    Google Scholar 

  48. Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39(2):91–100

    PubMed  CAS  Google Scholar 

  49. Mary I, Cummings DG, Biegala IC, Burkill PH, Archer SD, Zubkov MV (2006) Seasonal dynamics of bacterioplankton community structure at a coastal station in the western English Channel. Aquat Microb Ecol 42(2):119–126

    Article  Google Scholar 

  50. Hahn MW, Schauer M (2007) 'Candidatus Aquirestis calciphila' and 'Candidatus Haliscomenobacter calcifugiens, filamentous, planktonic bacteria inhabiting natural lakes. Int J Syst Evol Microbiol 57:936–940. doi:10.1099/ijs.0.64807-0

    Article  PubMed  CAS  Google Scholar 

  51. Pernthaler J, Zollner E, Warnecke F, Jurgens K (2004) Bloom of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanism. Appl Environ Microbiol 70(10):6272–6281. doi:10.1128/aem.70.10.6272-6281.2004

    Article  PubMed  CAS  Google Scholar 

  52. Schauer M, Hahn MW (2005) Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats. Appl Environ Microbiol 71(4):1931–1940. doi:10.1128/aem.71.4.1931-1940.2005

    Article  PubMed  CAS  Google Scholar 

  53. Schauer M, Jiang J, Hahn MW (2006) Recurrent seasonal variations in abundance and composition of filamentous SOL cluster bacteria (Saprospiraceae, Bacteroidetes) in oligomesotrophic Lake Mondsee (Austria). Appl Environ Microbiol 72(7):4704–4712. doi:10.1128/aem.02935-05

    Article  PubMed  CAS  Google Scholar 

  54. Zeder M, Peter S, Shabarova T, Pernthaler J (2009) A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11(10):2676–2686. doi:10.1111/j.1462-2920.2009.01994.x

    Article  PubMed  Google Scholar 

  55. Teira E, Gasol JM, Aranguren-Gassis M, Fernandez A, Gonzalez J, Lekunberri I, Alvarez-Salgado XA (2008) Linkages between bacterioplankton community composition, heterotrophic carbon cycling and environmental conditions in a highly dynamic coastal ecosystem. Environ Microbiol 10(4):906–917. doi:10.1111/j.1462-2920.2007.01509.x

    Article  PubMed  CAS  Google Scholar 

  56. Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, Marrase C (2004) Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol 70(11):6753–6766. doi:10.1128/aem.70.11.6753-6766.2004

    Article  PubMed  CAS  Google Scholar 

  57. Nielsen PH (1987) Biofilm dynamics and kinetics during high-rate sulfate reduction under anaerobic condition. Appl Environ Microbiol 53(1):27–32

    PubMed  CAS  Google Scholar 

  58. Sommaruga R, Casamayor EO (2009) Bacterial 'cosmopolitanism' and importance of local environmental factors for community composition in remote high-altitude lakes. Freshwat Biol 55(5):994–1005

    Article  Google Scholar 

  59. Bartrons M, Grimalt JO, Catalan J (2011) Altitudinal distributions of BDE-209 and other polybromodiphenyl ethers in high mountain lakes. Environ Pollut 159:1816–1822

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Authorities of the Aigüestortes and Estany de St Maurici National Park for permission to work in the protected areas and continuous support, and the Centre de Recerca d’Alta Muntanya (CRAM), Universitat de Barcelona, Vielha, for laboratory facilities. J. Arola, C. Gutiérrez, and X. Triadó are acknowledged for field and laboratory assistance, and J.C. Auguet for help with the diversity indexes and critical reading of the manuscript. This research was supported by grants TRAZAS (CGL2004-02989), NitroPir (CGL2010-19373), and PIRENA (CGL2009-13318) from the Spanish Office of Science and Innovation (MICINN), the CONSOLIDER grant GRACCIE CSD2007-00067 (MICINN), and the EU Project Euro-Limpacs (GOCE-CT-2003- 505540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio O. Casamayor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartrons, M., Catalan, J. & Casamayor, E.O. High Bacterial Diversity in Epilithic Biofilms of Oligotrophic Mountain Lakes. Microb Ecol 64, 860–869 (2012). https://doi.org/10.1007/s00248-012-0072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0072-4

Keywords

Navigation