Skip to main content
Log in

Baeyer-Villiger oxidations: biotechnological approach

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Baeyer-Villiger monooxygenases (BVMOs) are a very well-known and intensively studied class of flavin-dependent enzymes. Their substrate promiscuity, high chemo-, regio-, and enantioselectivity are prerequisites for the use in synthetic chemistry and should pave the way for successful industrial processes. Nonetheless, only a very limited number of industrial relevant transformations are known, mainly due to the lack of BVMOs stability and cofactor dependency. In this review, we focus on novel BVMO-mediated transformations, BVMOs in cascade type reactions, potential industrial applications, and how limitations have been tackled by the community. Special attention will be put on whole-cell immobilization strategies. We emphasize to bridge recent developments in fundamental research to industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  • Abril O, Ryerson CC, Walsh C, Whitesides GM (1989) Enzymatic Baeyer-Villiger type oxidations of ketones catalyzed by cyclohexanone oxygenase. Bioorg Chem 17:41–52. doi:10.1016/0045-2068(89)90006-0

    Article  CAS  Google Scholar 

  • Atia KS (2005) Co-immobilization of cyclohexanone monooxygenase and glucose-6-phosphate dehydrogenase onto polyethylenimine-porous agarose polymeric composite using gamma irradiation to use in biotechnological processes. Radiat Phys Chem 73:91–99. doi:10.1016/j.radphyschem.2004.07.005

    Article  CAS  Google Scholar 

  • Baldwin CVF, Woodley JM (2006) On oxygen limitation in a whole cell biocatalytic Baeyer-Villiger oxidation process. Biotechnol Bioeng 95:362–369. doi:10.1002/bit.20869

    Article  CAS  PubMed  Google Scholar 

  • Baldwin CVF, Wohlgemuth R, Woodley JM (2008) The first 200-L scale asymmetric Baeyer-Villiger oxidation using a whole-cell biocatalyst. Org Process Res Dev 12:660–665. doi:10.1021/op800046t

    Article  CAS  Google Scholar 

  • Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT (2012) Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis. Org Biomol Chem 10:6249–6265. doi:10.1039/c2ob25704a

    Article  CAS  PubMed  Google Scholar 

  • Balke K, Schmidt S, Genz M, Bornscheuer UT (2016) Switching the regioselectivity of a cyclohexanone monooxygenase towards (+)-trans-dihydrocarvone by rational design. ChemCatChem 7:3951–3955. doi:10.1021/acschembio.5b00723

    Google Scholar 

  • Bayer T, Milker S, Wiesinger T, Rudroff F, Mihovilovic MD (2015) Designer microorganisms for optimized redox cascade reactions—challenges and future perspectives. Adv Synth Catal 357:1587–1618. doi:10.1002/adsc.201500202

    Article  CAS  Google Scholar 

  • Bianchi DA, Moran-Ramallal R, Iqbal N, Rudroff F, Mihovilovic MD (2013) Enantiocomplementary access to carba-analogs of C-nucleoside derivatives by recombinant Baeyer-Villiger monooxygenases. Bioorg Med Chem Lett 23:2718–2720. doi:10.1016/j.bmcl.2013.02.085

    Article  CAS  PubMed  Google Scholar 

  • Bong YK, Clay MD, Collier SJ, Mijts B, Vogel M, Zhang X, Zhu J, Nazor J, Smith D, Song S (2011) Engineered cylohexanone monooxygenases for synthesis of prazole compounds. USA WO2011071982 A2

  • Bucko M, Schenkmayerova A, Gemeiner P, Vikartovska A, Mihovilovic MD, Lacik I (2011) Continuous testing system for Baeyer-Villiger biooxidation using recombinant Escherichia coli expressing cyclohexanone monooxygenase encapsulated in polyelectrolyte complex capsules. Enzyme Microb Technol 49:284–288. doi:10.1016/j.enzmictec.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  • Burdette D, Zeikus JG (1994) Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39e and characterization of the secondary-alcohol dehydrogenase (2-degrees Adh) as a bifunctional alcohol-dehydrogenase acetyl-CoA reductive thioesterase. Biochem J 302:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carballeira JD, Álvarez E, Sinisterra JV (2004) Biotransformation of cyclohexanone using immobilized Geotrichum candidum NCYC49. J Mol Catal B Enzym 28:25–32. doi:10.1016/j.molcatb.2004.01.009

    Article  CAS  Google Scholar 

  • Carballeira JD, Quezada MA, Hoyos P, Simeo Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol Adv 27:686–714. doi:10.1016/j.biotechadv.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  • Ceccoli RD, Bianchi DA, Rial DV (2014) Flavoprotein monooxygenases for oxidative biocatalysis: recombinant expression in microbial hosts and applications. Front Microbiol 5. doi:10.3389/Fmicb.2014.00025

  • Cuetos A, Rioz-Martinez A, Valenzuela ML, Lavandera I, de Gonzalo G, Carriedo GA, Gotor V (2012) Immobilized redox enzymatic catalysts: Baeyer-Villiger monooxygenases supported on polyphosphazenes. J Mol Catal B Enzym 74:178–183. doi:10.1016/j.molcatb.2011.10.002

    Article  CAS  Google Scholar 

  • de Gonzalo G, Mihovilovic MD, Fraaije MW (2010) Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts. ChemBioChem 11:2208–2231. doi:10.1002/cbic.201000395

    Article  PubMed  Google Scholar 

  • de Vos P, Bucko M, Gemeiner P, Navratil M, Svitel J, Faas M, Strand BL, Skjak-Braek G, Morch YA, Vikartovska A, Lacik I, Kollarikova G, Orive G, Poncelet D, Pedraz JL, Ansorge-Schumacher MB (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30:2559–2570. doi:10.1016/j.biomaterials.2009.01.014

    Article  PubMed  Google Scholar 

  • Doig SD, O’Sullivan LM, Patel S, Ward JM, Woodley JM (2001) Large scale production of cyclohexanone monooxygenase from Escherichia coli TOP10 pQR239. Enzyme Microb Technol 28:265–274. doi:10.1016/S0141-0229(00)00320-3

    Article  CAS  PubMed  Google Scholar 

  • Doig SD, Avenell PJ, Bird PA, Gallati P, Lander KS, Lye GJ, Wohlgemuth R, Woodley JM (2002) Reactor operation and scale-up of whole cell Baeyer-Villiger catalyzed lactone synthesis. Biotechnol Prog 18:1039–1046. doi:10.1021/bp0200954

    Article  CAS  PubMed  Google Scholar 

  • Doig SD, Simpson H, Alphand V, Furstoss R, Woodley JM (2003) Characterization of a recombinant Escherichia coli TOP10 [pQR239] whole-cell biocatalyst for stereoselective Baeyer-Villiger oxidations. Enzyme Microb Technol 32:347–355. doi:10.1016/S0141-0229(02)00317-4

    Article  CAS  Google Scholar 

  • Donoghue NA, Norris DB, Trudgill PW (1976) Purification and properties of cyclohexanone oxygenase from Nocardia-globerula Cl1 and Acinetobacter NCIB-9871. Eur J Biochem 63:175–192. doi:10.1111/j.1432-1033.1976.tb10220.x

    Article  CAS  PubMed  Google Scholar 

  • Fink MJ, Mihovilovic MD (2015) Non-hazardous Baeyer-Villiger oxidation of levulinic acid derivatives: alternative renewable access to 3-hydroxypropionates. Chem Commun 51:2874–2877. doi:10.1039/c4cc08734h

    Article  CAS  Google Scholar 

  • Fink MJ, Fischer TC, Rudroff F, Dudek H, Fraaije MW, Mihovilovic MD (2011) Extensive substrate profiling of cyclopentadecanone monooxygenase as Baeyer-Villiger biocatalyst reveals novel regiodivergent oxidations. J Mol Catal B Enzym 73:9–16. doi:10.1016/j.molcatb.2011.07.003

    Article  CAS  Google Scholar 

  • Fink MJ, Rial DV, Kapitanova P, Lengar A, Rehdorf J, Cheng Q, Rudroff F, Mihovilovic MD (2012) Quantitative comparison of chiral catalysts selectivity and performance: a generic concept illustrated with cyclododecanone monooxygenase as Baeyer-Villiger biocatalyst. Adv Synth Catal 354:3491–3500. doi:10.1002/adsc.201200453

    Article  CAS  Google Scholar 

  • Fink MJ, Schoen M, Rudroff F, Schnuerch M, Mihovilovic MD (2013) Single operation stereoselective synthesis of Aerangis lactones: combining continuous flow hydrogenation and biocatalysts in a chemoenzymatic sequence. ChemCatChem 5:724–727. doi:10.1002/cctc.201200753

    Article  CAS  Google Scholar 

  • Geitner K, Rehdorf J, Snajdrova R, Bornscheuer UT (2010) Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds. Appl Microbiol Biotechnol 88:1087–1093. doi:10.1007/s00253-010-2724-y

    Article  CAS  PubMed  Google Scholar 

  • Hilker I, Alphand V, Wohlgemuth R, Furstoss R (2004) Microbial transformations, 56. Preparative scale asymmetric Baeyer-Villiger oxidation using a highly productive “two-in-one” resin-based in situ SFPR concept. Adv Synth Catal 346:203–214. doi:10.1002/adsc.200303183

    Article  CAS  Google Scholar 

  • Hollrigl V, Hollmann F, Kleeb AC, Buehler K, Schmid A (2008) TADH, the thermostable alcohol dehydrogenase from Thermus sp ATN1: a versatile new biocatalyst for organic synthesis. Appl Microbiol Biotechnol 81:263–273. doi:10.1007/s00253-008-1606-z

    Article  PubMed  Google Scholar 

  • Hucik M, Bucko M, Gemeiner P, Stefuca V, Vikartovska A, Mihovilovic MD, Rudroff F, Iqbal N, Chorvat D, Lacik I (2010) Encapsulation of recombinant E. coli expressing cyclopentanone monooxygenase in polyelectrolyte complex capsules for Baeyer-Villiger biooxidation of 8-oxabicyclo[3.2.1]oct-6-en-3-one. Biotechnol Lett 32:675–680. doi:10.1007/s10529-010-0203-2

    Article  CAS  PubMed  Google Scholar 

  • Isupov MN, Schröder E, Gibson RP, Beecher J, Donadio G, Saneei V, Dcunha SA, McGhie EJ, Sayer C, Davenport CF, Lau PC, Hasegawa Y, Iwaki H, Kadow M, Balke K, Bornscheuer UT, Bourenkov G, Jennifer A, Littlechild JA (2015) The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida. Acta Cystal Sect D Biol Cystal 71:2344–2353. doi:10.1107/S1399004715017939

    Article  CAS  Google Scholar 

  • Iwaki H, Hasegawa Y, Wang SZ, Kayser MM, Lau PCK (2002) Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in sp strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-monooxygenase. Appl Environ Microbiol 68:5671–5684. doi:10.1128/Aem.68.11.5671-5684.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang HY, Jeon EY, Baek AH, Lee SM, Park JB (2014) Production of omega-hydroxyundec-9-enoic acid and n-heptanoic acid from ricinoleic acid by recombinant Escherichia coli-based biocatalyst. Process Biochem 49:617–622. doi:10.1016/j.procbio.2014.01.025

    Article  CAS  Google Scholar 

  • Kadow M, Loschinski K, Saß S, Schmidt M, Bornscheuer UT (2012) Completing the series of BMVOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of the two missing genes, their functional, expression in E. coli and biochemical characterization. Appl Microbiol Biotechnol 96:419–429. doi:10.1007/s00253-011-3859-1

    Article  CAS  PubMed  Google Scholar 

  • Kadow M, Balke K, Willetts A, Bonscheuer UT, Bäckwall JE (2014) Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenase with a flavin reductase from E.coli. Appl Microbiol Biotechnol 98:3975–3986. doi:10.1007/s00253-013-5338-3

    Article  CAS  PubMed  Google Scholar 

  • Kayser MM (2009) ‘Designer reagents’ recombinant microorganisms: new and powerful tools for organic synthesis. Tetrahedron 65:947–974. doi:10.1016/j.tet.2008.10.039

    Article  CAS  Google Scholar 

  • Kim SU, Kim KR, Kim JW, Kim S, Kwon YU, Oh DK, Park JB (2015) Microbial synthesis of plant oxylipins from gamma-linolenic acid through designed biotransformation pathways. J Agric Food Chem 63:2773–2781. doi:10.1021/jf5058843

    Article  CAS  PubMed  Google Scholar 

  • Kirschner A, Altenbuchner J, Bornscheuer UT (2007) Cloning, expression, and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli. Appl Microbiol Biotechnol 73:1065–1072. doi:10.1007/s00253-006-0556-6

    Article  CAS  PubMed  Google Scholar 

  • Kohler V, Turner NJ (2015) Artificial concurrent catalytic processes involving enzymes. Chem Commun 51:450–464. doi:10.1039/c4cc07277d

    Article  CAS  Google Scholar 

  • Law HEM, Baldwin CVF, Chen BH, Woodley JM (2006) Process limitations in a whole-cell catalysed oxidation: sensitivity analysis. Chem Eng Sci 61:6646–6652. doi:10.1016/j.ces.2006.06.007

    Article  CAS  Google Scholar 

  • Leisch H, Morley K, Lau PCK (2011) Baeyer-Villiger monooxygenases: more than just green chemistry. Chem Rev 111:4165–4222. doi:10.1021/cr1003437

    Article  CAS  PubMed  Google Scholar 

  • Lima-Ramos J, Neto W, Woodley JM (2014) Engineering of biocatalysts and biocatalytic processes. Top Catal 57:301–320. doi:10.1007/s11244-013-0185-0

    Article  CAS  Google Scholar 

  • Liu J, Li Z (2013) Cascade biotransformations via enantioselective reduction, oxidation, and hydrolysis: preparation of (R)-delta-lactones from 2-Alkylidenecyclopentanones. ACS Catal 3:908–911. doi:10.1021/Cs400101v

    Article  CAS  Google Scholar 

  • Mallin H, Wulf H, Bornscheuer UT (2013) A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of epsilon-caprolactone from cyclohexanol. Enzyme Microb Technol 53:283–287. doi:10.1016/j.enzmictec.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  • Meeuwissen SA, Rioz-Martinez A, de Gonzalo G, Fraaije MW, Gotor V, van Hest JCM (2011) Cofactor regeneration in polymersome nanoreactors: enzymatically catalysed Baeyer-Villiger reactions. J Mater Chem 21:18923–18926. doi:10.1039/c1jm12407b

    Article  CAS  Google Scholar 

  • Melgarejo-Torres R, Castillo-Araiza CO, López-Ordaz P, Torres-Martínez D, Gutierrez-Rojas M, Lye GJ, Huerta-Ochoa S (2014) Kinetic mathematical model for ketone bioconversion using Escherichia coli TOP10 pQR239. Chem Eng J 240:1–9. doi:10.1016/j.cej.2013.11.047

    Article  CAS  Google Scholar 

  • Melgarejo-Torres R, Castillo-Araiza CO, Dutta A, Beny G, Torres-Martinez D, Gutierrez-Rojas M, Lye GJ, Huerta-Ochoa S (2015) Mathematical model of a three phase partitioning bioreactor for conversion of ketones using whole cells. Chem Eng J 260:765–775. doi:10.1016/j.cej.2014.08.097

    Article  CAS  Google Scholar 

  • Mihovilovic MD (2006) Enzyme mediated Baeyer-Villiger oxidations. Curr Org Chem 10:1265–1287. doi:10.2174/138527206777698002

    Article  CAS  Google Scholar 

  • Mihovilovic MD, Rudroff F, Grotzl B (2004) Enantioselective Baeyer-Villiger oxidations. Curr Org Chem 8:1057–1069. doi:10.2174/1385272043370159

    Article  CAS  Google Scholar 

  • Mihovilovic MD, Rudroff F, Grötzl B, Kapitan P, Snajdrova R, Rydz J, Mach R (2005) Family clustering of Baeyer–Villiger monooxygenases based on protein sequence and stereopreference. Angew Chem Int Ed 44:3609–3613. doi:10.1002/anie.200462964

    Article  CAS  Google Scholar 

  • Mihovilovic MD, Kapitan P, Kapitanova P (2008) Regiodivergent Baeyer-Villiger oxidation of fused ketones by recombinant whole-cell biocatalysts. ChemSusChem 1:143–148. doi:10.1002/cssc.200700069

    Article  CAS  PubMed  Google Scholar 

  • Muschiol J, Peters C, Oberleitner N, Mihovilovic MD, Bornscheuer UT, Rudroff F (2015) Cascade catalysis—strategies and challenges en route to preparative synthetic biology. Chem Commun 51:5798–5811. doi:10.1039/c4cc08752f

    Article  CAS  Google Scholar 

  • Oberleitner N, Peters C, Muschiol J, Kadow M, Sass S, Bayer T, Schaaf P, Iqbal N, Rudroff F, Mihovilovic MD, Bornscheuer UT (2013) An enzymatic toolbox for cascade reactions: a showcase for an in vivo redox sequence in asymmetric synthesis. ChemCatChem 5:3524–3528. doi:10.1002/cctc.201300604

    Article  CAS  Google Scholar 

  • Oberleitner N, Peters C, Rudroff F, Bornscheuer UT, Mihovilovic MD (2014) In vitro characterization of an enzymatic redox cascade composed of an alcohol dehydrogenase, an enoate reductases and a Baeyer-Villiger monooxygenase. J Biotechnol 192:393–399. doi:10.1016/jpiotec.20111.0/1.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberleitner N, Ressmann AK, Bica K, Gärtner P, Fraaije MW, Bornscheuer UT, Rudroff F, Mihovilovic MD (2016) From waste to value—direct utilization of limonene from orange peel in biocatalytic cascade reaction towards chiral carvolactone. Green Chem, accepted

  • Oh HJ, Kim SU, Song JW, Lee JH, Kang WR, Jo YS, Kim KR, Bornscheuer UT, Oh DK, Park JB (2015) Biotransformation of linoleic acid into hydroxy fatty acids and carboxylic acids using a linoleate double bond hydratase as key enzyme. Adv Synth Catal 357:408–416. doi:10.1002/adsc.201400893

    Article  CAS  Google Scholar 

  • Opperman DJ, Reetz MT (2010) Towards practical Baeyer-Villiger-monooxygenases: design of cyclohexanone monooxygenase mutants with enhanced oxidative stability. ChemBioChem 11:2589–2596. doi:10.1002/cbic.201000464

    Article  CAS  PubMed  Google Scholar 

  • Pazmino DET, Dudek HM, Fraaije MW (2010a) Baeyer-Villiger monooxygenases: recent advances and future challenges. Curr Opin Chem Biol 14:138–144. doi:10.1016/j.cbpa.2009.11.017

    Article  Google Scholar 

  • Pazmino DET, Winkler M, Glieder A, Fraaije MW (2010b) Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J Biotechnol 146:9–24. doi:10.1016/j.jbiotec.2010.01.021

    Article  Google Scholar 

  • Pennec A, Jacobs CL, Opperman DJ, Smit MS (2015) Revisiting cytochrome P450-mediated oxyfunctionalization of linear and cyclic alkanes. Adv Synth Catal 357:118–130. doi:10.1002/adsc.201400410

    Article  CAS  Google Scholar 

  • Prusse U, Bilancetti L, Bucko M, Bugarski B, Bukowski J, Gemeiner P, Lewinska D, Manojlovic V, Massart B, Nastruzzi C, Nedovic V, Poncelet D, Siebenhaar S, Tobler L, Tosi A, Vikartovska A, Vorlop KD (2008) Comparison of different technologies for alginate beads production. Chem Pap 62:364–374. doi:10.2478/s11696-008-0035-x

    Article  Google Scholar 

  • Rebros M, Liptak L, Rosenberg M, Bucko M, Gemeiner P (2014) Biocatalysis with Escherichia coli-overexpressing cyclopentanone monooxygenase immobilized in polyvinyl alcohol gel. Lett Appl Microbiol 58:556–563. doi:10.1111/lam.12227

    Article  CAS  PubMed  Google Scholar 

  • Reetz MT, Wang LW, Bocola M (2006) Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed 45:1236–1241. doi:10.1002/anie.200502746

    Article  CAS  Google Scholar 

  • Rehdorf J, Kirschner A, Bornscheuer UT (2007) Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnol Lett 29:1393–1398. doi:10.1007/s10529-007-9401-y

    Article  CAS  PubMed  Google Scholar 

  • Rehdorf J, Mihovilovic MD, Fraaije MW, Bornscheuer UT (2010) Enzymatic synthesis of enantiomerically pure beta-amino ketones, beta-amino esters, and beta-amino alcohols with Baeyer-Villiger monooxygenases. Chem Eur J 16:9525–9535. doi:10.1002/chem.201001480

    Article  CAS  PubMed  Google Scholar 

  • Reignier T, de Berardinis V, Petit JL, Mariage A, Hamze K, Duquesne K, Alphand V (2014) Broadening the scope of Baeyer-Villiger monooxygenase activities toward alpha,beta-unsaturated ketones: a promising route to chiral enol-lactones and ene-lactones. Chem Commun 50:7793–7796. doi:10.1039/c4cc02541e

    Article  CAS  Google Scholar 

  • Riebel A, de Gonzalo G, Fraaije MW (2013) Expanding the biocatalytic toolbox of flavoprotein monooxygenases from Rhodococcus jostii RHA1. J Mol Catal B Enzym 88:20–25. doi:10.1016/j.molcatb.2012.11.009

    Article  CAS  Google Scholar 

  • Rudroff F, Bianchi DA, Moran-Ramallal R, Iqbal N, Dreier D, Mihovilovic MD (2015) Synthesis of tetrahydrofuran-based natural products and their carba analogs via stereoselective enzyme mediated Baeyer-Villiger oxidation. Tetrahedron. doi:10.1016/j.tet.2015.11.048

    Google Scholar 

  • Sattler JH, Fuchs M, Mutti FG, Grischek B, Engel P, Pfeffer J, Woodley JM, Kroutil W (2014) Introducing an in situ capping strategy in systems biocatalysis to access 6-aminohexanoic acid. Angew Chem Int Ed 53:14153–14157. doi:10.1002/anie.201409227

    Article  CAS  Google Scholar 

  • Schenkmayerova A, Bucko M, Gemeiner P, Chorvat D, Lacik I (2012) Viability of free and encapsulated Escherichia coli overexpressing cyclopentanone monooxygenase monitored during model Baeyer-Villiger biooxidation by confocal laser scanning microscopy. Biotechnol Lett 34:309–314. doi:10.1007/s10529-011-0765-7

    Article  CAS  PubMed  Google Scholar 

  • Schenkmayerova A, Bucko M, Gemeiner P, Katrlik J (2013) Microbial monooxygenase amperometric biosensor for monitoring of Baeyer-Villiger biotransformation. Biosens Bioelectron 50:235–238. doi:10.1016/j.bios.2013.06.061

    Article  CAS  PubMed  Google Scholar 

  • Schenkmayerova A, Bucko M, Gemeiner P, Trel’ova D, Lacik I, Chorvat D, Acai P, Polakovic M, Liptak L, Rebros M, Rosenberg M, Stefuca V, Nedela V, Tihlarikova E (2014) Physical and bioengineering properties of polyvinyl alcohol lens-shaped particles versus spherical polyelectrolyte complex microcapsules as immobilisation matrices for a whole-cell Baeyer-Villiger monooxygenase. Appl Biochem Biotechnol 174:1834–1849. doi:10.1007/s12010-014-1174-x

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Bűchsenschűtz HC, Scherkus C, Liese A, Gröger H, Bornscheuer UT (2015a) Biocatalytic access chiral polyesters by an artificial enzyme cascade syntheses. ChemCatChem 7:3951–3955. doi:10.1002/cctc.201500823

    Article  CAS  Google Scholar 

  • Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Groger H, Liese A, Herz HG, Bornscheuer UT (2015b) An enzyme cascade synthesis of epsilon-caprolactone and its oligomers. Angew Chem Int Ed 54:2784–2787. doi:10.1002/anie.201410633

    Article  CAS  Google Scholar 

  • Snajdrova R, Grogan G, Mihovilovic MD (2006) Resolution of fused bicyclic ketones by a recombinant biocatalyst expressing the Baeyer-Villiger monooxygenase gene Rv3049c from Mycobacterium tuberculosis H37Rv. Bioorg Med Chem Lett 16:4813–4817. doi:10.1016/j.bmcl.2006.06.072

    Article  CAS  PubMed  Google Scholar 

  • Song JW, Jeon EY, Song DH, Jang HY, Bornscheuer UT, Oh DK, Park JB (2013) Multistep enzymatic synthesis of long-chain alpha,omega-dicarboxylic and omega-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew Chem Int Ed 52:2534–2537. doi:10.1002/anie.201209187

    Article  CAS  Google Scholar 

  • Staudt S, Bornscheuer UT, Menyes U, Hummel W, Groger H (2013) Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into epsilon-caprolactone. Enzyme Microb Technol 53:288–292. doi:10.1016/j.enzmictec.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  • van Beek HL, Winter RT, Eastham GR, Fraaije MW (2014) Synthesis of methyl propanoate by Baeyer-Villiger monooxygenases. Chem Commun 50:13034–13036. doi:10.1039/c4cc06489e

    Article  Google Scholar 

  • van Beilen JB, Mourlane F, Seeger MA, Kovac J, Li Z, Smits THM, Fritsche U, Witholt B (2003) Cloning of Baeyer-Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. Environ Microbiol 5:174–182. doi:10.1046/j.1462-2920.2003.00401.x

    Article  PubMed  Google Scholar 

  • van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689. doi:10.1016/j.jbiotec.2006.03.044

    Article  PubMed  Google Scholar 

  • Yang JZ, Wang SZ, Lorrain MJ, Rho D, Abokitse K, Lau PCK (2009) Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems. Appl Microbiol Biotechnol 84:867–876. doi:10.1007/s00253-009-2026-4

    Article  CAS  PubMed  Google Scholar 

  • Zambianchi F, Pasta P, Carrea G, Colonna S, Gaggero N, Woodley JM (2002) Use of isolated cyclohexanone monooxygenase from recombinant Escherichia coli as a biocatalyst for Baeyer-Villiger and sulfide oxidations. Biotechnol Bioeng 78:489–496. doi:10.1002/Bit.10207

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-G, Roiban G-D, Acevedo JP, Polyak I, Reetz MT (2013) A new type of stereoselectivity in Baeyer-Villiger reactions: access to E- and Z-olefins. Adv Synth Catal 355:99–106. doi:10.1002/adsc.201200759

    Article  CAS  Google Scholar 

  • Zuhse R, Leggewie C, Hollmann F, Kara S (2015) Scaling-up of “smart cosubstrate” 1,4-butanediol promoted asymmetric reduction of ethyl-4,4,4-trifluoroacetoacetate in organic media. Org Process Res Dev 19:369–372. doi:10.1021/op500374x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Grant Agency for Science VEGA 2/0090/16 and by the Slovak Research and Development Agency under contract no. APVV-15-0227. This publication is the result of the project implementation: applied research in the field of industrial biocatalysis, ITMS code: 26240220079 supported by the Research & Development Operational Programme funded by the ERDF. Dr. Florian Rudroff and Prof. Marko D. Mihovilovic thank the FWF (grant no. I723-N17, P24483-B20), TU Wien (ABC-TOP Anschubfinanzierung), and the COST action systems biocatalysis WG2 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Gemeiner or Florian Rudroff.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bučko, M., Gemeiner, P., Schenkmayerová, A. et al. Baeyer-Villiger oxidations: biotechnological approach. Appl Microbiol Biotechnol 100, 6585–6599 (2016). https://doi.org/10.1007/s00253-016-7670-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7670-x

Keywords

Navigation