Skip to main content
Log in

Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 G (ERG20 K197G) and ERG20 WW (ERG20 F96W-N127W), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 WW and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blazeck J, Garg R, Reed B, Alper HS (2012) Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol Bioeng 109:2884–2895

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95:4126–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan TC, Turner CD, Kromer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109:2513–2522

    Article  CAS  PubMed  Google Scholar 

  • Brennan TC, Kromer JO, Nielsen LK (2013) Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microb 79:3590–3600

    Article  CAS  Google Scholar 

  • Brennan TC, Williams TC, Schulz BL, Palfreyman RW, Kromer JO, Nielsen LK (2015) Evolutionary engineering improves tolerance for replacement jet fuels in Saccharomyces cerevisiae. Appl Environ Microb 81:3316–3325. doi:10.1128/aem.04144-14

    Article  CAS  Google Scholar 

  • Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A 112:3205–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke C, Croteau R (2002) Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405:130–136

    Article  CAS  PubMed  Google Scholar 

  • Carrau FM, Medina K, Boido E, Farina L, Gaggero C, Dellacassa F, Versini G, Henschke PA (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 243:107–115

    Article  CAS  PubMed  Google Scholar 

  • Chang T-H, Hsieh F-L, Ko T-P, Teng K-H, Liang P-H, Wang AHJ (2010) Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. The Plant Cell 22:454–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Viljoen AM (2010) Geraniol—a review of a commercially important fragrance material. S Afr J Bot 76:643–651

    Article  CAS  Google Scholar 

  • Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Liu Y, Zhang X, Shi M, Wang B, Wang D, Huang L, Zhang X (2013) Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 20:146–156

    Article  CAS  PubMed  Google Scholar 

  • Davies BSJ, Wang HS, Rine J (2005) Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms. Mol Cell Biol 25:7375–7385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong L, Miettinen K, Goedbloed M, Verstappen FWA, Voster A, Jongsma MA, Memelink J, Krol SVD (2013) Characterization of two geraniol synthases from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization. Metab Eng 20:198–211

    Article  PubMed  Google Scholar 

  • Duetz WA, Bouwmeester H, van Beilen JB, Witholt B (2003) Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol 61:269–277

    Article  CAS  PubMed  Google Scholar 

  • Entian K-D, Kötter P, Alistair JPB, Mick T (1998) Yeast mutant and plasmid collections. In: Methods in microbiology, Volume 26. Academic Press, pp 431–449

  • Fischer MJC, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892

    Article  CAS  PubMed  Google Scholar 

  • Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio 5:e01932–e01914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Method Enzymol 350:87–96

    Article  CAS  Google Scholar 

  • Hong K-K, Vongsangnak W, Vemuri GN, Nielsen J (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci U S A 108:12179–12184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh F-L, Chang T-H, Ko T-P, Wang AHJ (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 3:298–306

    Article  CAS  PubMed  Google Scholar 

  • Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings SM, Tsay YH, Fisch TM, Robinson GW (1991) Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci U S A 88:6038–6042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühner S, Noort VV, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castaño-Diez D, Chen W, Devos D, Güell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Böttcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin AC (2009) Proteome organization in a genome-reduced bacterium. Science 326:1235–1240

    Article  PubMed  Google Scholar 

  • Kung Y, Runguphan W, Keasling JD (2012) From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 1:498–513

    Article  CAS  PubMed  Google Scholar 

  • Leggans EK, Duncan KK, Barker TJ, Schleicher KD, Boger DL (2013) A remarkable series of vinblastine analogues displaying enhanced activity and an unprecedented tubulin binding steric tolerance: C20′ urea derivatives. J Med Chem 56:628–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang W, Du G, Chen J, Zhou J (2013a) Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. Journal Biotechnol 168:446–451

    Article  CAS  Google Scholar 

  • Liu J, Zhu Y, Du G, Zhou J, Chen J (2013b) Response of Saccharomyces cerevisiae to d-limonene-induced oxidative stress. Appl Microbiol Biotechnol 97:6467–6475

    Article  CAS  PubMed  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. The Plant Cell 7:1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon AL, Poole FL, Cvetkovic A, Trauger SA, Kalisiak E, Scott JW, Shanmukh S, Praissman J, Jenney FE Jr, Wikoff WR, Apon JV, Siuzdak G, Adams MWW (2009) Novel multiprotein complexes identified in the hyperthermophilic archaeon Pyrococcus furiosus by non-denaturing fractionation of the native proteome. Mol Cell Proteomics: MCP 8:735–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald M, Fischer M, Dirninger N, Karst F (2007) Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7:413–421

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Pattnaik S, Subramanyam VR, Bapaji M, Kole CR (1997) Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 89:39–46

    CAS  PubMed  Google Scholar 

  • Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA (2013) Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Mol Plant 6:1531–1549

    Article  CAS  PubMed  Google Scholar 

  • Rico J, Pardo E, Orejas M (2010) Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae. Appl Environ Microbiol 76:6449–6454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez S, Kirby J, Denby CM, Keasling JD (2014) Production and quantification of sesquiterpenes in Saccharomyces cerevisiae, including extraction, detection and quantification of terpene products and key related metabolites. Nat Protocols 9:1980–1996

    Article  CAS  PubMed  Google Scholar 

  • Sarria S, Wong B, Garcia Martin H, Keasling JD, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Biol 3:466–475

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69:49–57

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56:89–124

    Article  CAS  PubMed  Google Scholar 

  • Tippmann S, Scalcinati G, Siewers V, Nielsen J (2015) Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng. doi:10.1002/bit.25683

    PubMed  Google Scholar 

  • Uribe S, Ramirez J, Pena A (1985) Effects of beta-pinene on yeast membrane functions. J Bacteriol 161:1195–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu Q, Cao Y, Feng X, Zheng Y, Zou H, Liu H, Yang J, Xian M (2014) Microbial production of sabinene—a new terpene-based precursor of advanced biofuel. Microb Cell Fact 13:20–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene. Proc Natl Acad Sci USA 134:3234–3241

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (2012AA022106), the National Natural Science Foundation of China (31470163), the National Key Technology R&D Program of China (2014BAD02B07), Project of the National Energy Administration of China (NY20130402), and the Key R & D Program of Shandong Province (2015GSF121015). We thank Prof. Hal S Alper for supplying the plasmid containing the UASCIT(3×) -TEF1 promoter.

Author contributions

JZ and JH designed the experiments. JZ and CL carried out the experiments. JZ, XB, YS, and JH analyzed the data. JZ and JH wrote the manuscript. All of the authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hou.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare that they have no competing interests.

Additional information

Jianzhi Zhao and Xiaoming Bao contributed equally to the study.

Electronic supplementary materials

ESM 1

(PDF 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Bao, X., Li, C. et al. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 100, 4561–4571 (2016). https://doi.org/10.1007/s00253-016-7375-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7375-1

Keywords

Navigation