Skip to main content

Advertisement

Log in

Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ansamitocins isolated from Actinosynnema pretiosum, potent antitumor compounds, belong to the family of maytansinoids, and the antibody-maytansinoid conjugates are currently under different phases of clinical trials. The clinical applications of ansamitocins have stimulated extensive studies to improve their production yields. In this study, we investigated the function of a pathway-specific S treptomyces antibiotic regulatory protein (SARP) family regulator, Asm18, and observed that ectopic overexpression of the asm18 gene increased the production of N-demethyl-4,5-desepoxy-maytansinol (2) to 50 mg/L in the HGF052 + pJTU824-asm18 strain, an increase by 4.7-fold compared to that of the control strain HGF052 + pJTU824. Real-time PCR analysis showed that the overexpression of the asm18 gene selectively increased the transcription levels of the genes involved in the biosynthesis of the starter unit (asm43), polyketide assembly (asmA), post-PKS modification (asm21), as well as the transcription levels of the regulatory gene (asm8), which is a specific LAL-type activator in ansamitocin biosynthesis. With the increase of fermentation titre, seven ansamitocin analogs (17) including three new ones (1, 5, and 6) and maytansinol (7) were isolated from the HGF052 + pJTU824-asm18 strain. Our results not only pave the way for further improving the production of ansamitocin analogs but also indicate that the post-PKS modifications of ansamitocin biosynthesis are flexible, which brings a potential of producing maytansinol, the most fascinating intermediate for the synthesis of antibody-maytansinoid conjugates, by optimizing the HGF052 and/or HGF052 + pJTU824-asm18 strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amiri-Kordestani L, Blumenthal GM, Xu QC, Zhang L, Tang SW, Ha L, Weinberg WC, Chi B, Candau-Chacon R, Hughes P, Russell AM, Miksinski SP, Chen XH, McGuinn WD, Palmby T, Schrieber SJ, Liu Q, Wang J, Song P, Mehrotra N, Skarupa L, Clouse K, Al-Hakim A, Sridhara R, Ibrahim A, Justice R, Pazdur R, Cortazar P (2014) FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 20:4436–4441

    Article  CAS  PubMed  Google Scholar 

  • Antón N, Mendes MV, Martín JF, Aparicio JF (2004) Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575

    Article  PubMed Central  PubMed  Google Scholar 

  • Bandi S, Kim Y, Chang YK, Shang GD, Yu TW, Floss HG (2006) Construction of asm2 deletion mutant of Actinosynnema pretiosum and medium optimization for ansamitocin P-3 production using statistical approach. J Microb Biotechnol 16:1338–1346

    CAS  Google Scholar 

  • Bibb MJ, Findlay PR, Johnson MW (1984) The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30:157–166

    Article  CAS  PubMed  Google Scholar 

  • Carroll BJ, Moss SJ, Bai L, Kato Y, Toelzer S, Yu TW, Floss HG (2002) Identification of a set of genes involved in the formation of the substrate for the incorporation of the unusual “glycolate” chain extension unit in ansamitocin biosynthesis. J Am Chem Soc 124:4176–4177

    Article  CAS  PubMed  Google Scholar 

  • Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull 52:1–26

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wendt-Pienkowski E, Shen B (2008) Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts. J Bacteriol 190:5587–5596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Smanski MJ, Shen B (2010) Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86:19–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fant CB, Taatjes DJ (2015) All in the family: a portrait of a nuclear receptor co-activator complex. Mol Cell 57:952–954

    Article  CAS  PubMed  Google Scholar 

  • Floss HG (2006) Combinatorial biosynthesis—potential and problems. J Biotechnol 124:242–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Y, Fan Y, Nambou K, Wei L, Liu Z, Imanaka T, Hua Q (2014) Enhancement of ansamitocin P-3 production in Actinosynnema pretiosum by a synergistic effect of glycerol and glucose. J Ind Microbiol Biotechnol 41:143–152

    Article  CAS  PubMed  Google Scholar 

  • Hatano K, Mizuta E, Akiyama S, Higashide E, Nakao Y (1985) Biosynthetic origin of the ansa-structure of ansamitocin P-3. Agric Biol Chem 49:327–333

    Article  CAS  Google Scholar 

  • He X, Li R, Pan Y, Liu G, Tan H (2010) SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN–sanO intergenic region in Streptomyces ansochromogenes. Microbiology 156(3):828–837

    Article  CAS  PubMed  Google Scholar 

  • Higashide E, Asai M, Ootsu K, Tanida S, Kozai Y, Hasegawa T, Kishi T, Sugino Y, Yoneda M (1977) Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia. Nature 270:721–722

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31

    Article  CAS  PubMed  Google Scholar 

  • Izawa M, Tanida S, Asai M (1981) Ansamitocin analogs from a mutant strain of Nocardia. II. Isolation and structure. J Antibiot 34:496–506

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Zhong JJ (2011) Enhanced production of ansamitocin P-3 by addition of Mg2+ in fermentation of Actinosynnema pretiosum. Bioresour Technol 102:10147–10150

    Article  CAS  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Knobloch T, Drager G, Collisi W, Sasse F, Kirschning A (2012) Unprecedented deoxygenation at C-7 of the ansamitocin core during mutasynthetic biotransformations. Beilstein J Org Chem 8:861–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubota T, Brunjes M, Frenzel T, Xu J, Kirschning A, Floss HG (2006) Determination of the cryptic stereochemistry of the first PKS chain-extension step in ansamitocin biosynthesis by Actinosynnema pretiosum. Chembiochem 7:1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Kupchan SM, Komoda Y, Branfman AR, Sneden AT, Court WA, Thomas GJ, Hintz HP, Smith RM, Karim A, Howie GA, Verma AK, Nagao Y, Dailey RG Jr, Zimmerly VA, Sumner WC Jr (1977) The maytansinoids. Isolation, structural elucidation, and chemical interrelation of novel ansa macrolides. J Org Chem 42:2349–2357

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260

    Article  PubMed Central  PubMed  Google Scholar 

  • Li R, Xie Z, Tian Y, Yang H, Chen W, You D, Liu G, Deng Z, Tan H (2009) polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis. Microbiology 155:1819–1831

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao P, Kang Q, Ma J, Bai L, Deng Z (2011) Dual carbamoylations on the polyketide and glycosyl moiety by Asm21 result in extended ansamitocin biosynthesis. Chem Biol 18:1571–1580

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Bai L, Deng Z, Zhong J-J (2010) Effect of ammonium in medium on ansamitocin P-3 production by Actinosynnema pretiosum. Biotechnol Bioprocess Eng 15:119–125

    Article  CAS  Google Scholar 

  • Lin J, Bai L, Deng Z, Zhong JJ (2011) Enhanced production of ansamitocin P-3 by addition of isobutanol in fermentation of Actinosynnema pretiosum. Bioresour Technol 102:1863–1868

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX (2011) Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2—positive cancer. Clin Cancer Res 17:6437–6447

    Article  CAS  PubMed  Google Scholar 

  • Mancuso L, Knobloch T, Buchholz J, Hartwig J, Moller L, Seidel K, Collisi W, Sasse F, Kirschning A (2014) Preparation of thermocleavable conjugates based on ansamitocin and superparamagnetic nanostructured particles by a chemobiosynthetic approach. Chemistry 20:17541–17551

    Article  CAS  PubMed  Google Scholar 

  • Moss SJ, Bai L, Toelzer S, Carroll BJ, Mahmud T, Yu TW, Floss HG (2002) Identification of Asm19 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N-desmethyl-4,5-desepoxymaytansinol, not maytansinol, as its substrate. J Am Chem Soc 124:6544–6545

    Article  CAS  PubMed  Google Scholar 

  • Ng D, Chin HK, Wong VV (2009) Constitutive overexpression of asm2 and asm39 increases AP-3 production in the actinomycete Actinosynnema pretiosum. J Ind Microbiol Biotechnol 36:1345–1351

    Article  CAS  PubMed  Google Scholar 

  • Niculescu-Duvaz I (2010) Trastuzumab emtansine, an antibody-drug conjugate for the treatment of HER2+ metastatic breast cancer. Curr Opin Mol Ther 12:350–360

    CAS  PubMed  Google Scholar 

  • Pan W, Kang Q, Wang L, Bai L, Deng Z (2013) Asm8, a specific LAL-type activator of 3-amino-5-hydroxybenzoate biosynthesis in ansamitocin production. Sci China Life Sci 56:601–608

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW, Russell DW (2001) Molecular cloning: a laboratory manual (3-volume set)

  • Sambrook J, Russell DW, Sambrook J (2006) The condensed protocols from molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sheldon PJ, Busarow SB, Hutchinson CR (2002) Mapping the DNA‐binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460

    Article  CAS  PubMed  Google Scholar 

  • Spiteller P, Bai L, Shang G, Carroll BJ, Yu TW, Floss HG (2003) The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J Am Chem Soc 125:14236–14237

    Article  CAS  PubMed  Google Scholar 

  • Taft F, Brunjes M, Knobloch T, Floss HG, Kirschning A (2009) Timing of the Delta(10,12)-Delta(11,13) double bond migration during ansamitocin biosynthesis in Actinosynnema pretiosum. J Am Chem Soc 131:3812–3813

    Article  CAS  PubMed  Google Scholar 

  • Venghateri JB, Gupta TK, Verma PJ, Kunwar A, Panda D (2013) Ansamitocin P3 depolymerizes microtubules and induces apoptosis by binding to tubulin at the vinblastine site. PLoS One 8(10):e75182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei GZ, Bai LQ, Yang T, Ma J, Zeng Y, Shen YM, Zhao PJ (2010) A new antitumour ansamitocin from Actinosynnema pretiosum. Nat Prod Res 24:1146–1150

    Article  CAS  PubMed  Google Scholar 

  • Wenzel SC, Williamson RM, Grunanger C, Xu J, Gerth K, Martinez RA, Moss SJ, Carroll BJ, Grond S, Unkefer CJ, Muller R, Floss HG (2006) On the biosynthetic origin of methoxymalonyl-acyl carrier protein, the substrate for incorporation of “glycolate” units into ansamitocin and soraphen A. J Am Chem Soc 128:14325–14336

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Kang Q, Shen Y, Su W, Bai L (2011) Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS. Mol BioSyst 7:2459–2469

    Article  CAS  PubMed  Google Scholar 

  • Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 99:7968–7973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao P, Bai L, Ma J, Zeng Y, Li L, Zhang Y, Lu C, Dai H, Wu Z, Li Y, Wu X, Chen G, Hao X, Shen Y, Deng Z, Floss HG (2008) Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins. Chem Biol 15:863–874

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Linquan Bai (Shanghai Jiao Tong University) for his help with the HGF052 strain and pJTU824 vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuemao Shen.

Ethics declarations

Funding

This study was funded by the National Program on Key Basic Research Project (973 program 2012CB721005), and the National Natural Science Foundation of China (81373304, 81530091), and Program for Changjiang Scholars and Innovative Research Team in University (IRT13028).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Shanren Li and Chunhua Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3588 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Lu, C., Chang, X. et al. Constitutive overexpression of asm18 increases the production and diversity of maytansinoids in Actinosynnema pretiosum . Appl Microbiol Biotechnol 100, 2641–2649 (2016). https://doi.org/10.1007/s00253-015-7127-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7127-7

Keywords

Navigation