Skip to main content
Log in

Biochemical and genetic characterization of β-1,3 glucanase from a deep subseafloor Laceyella putida

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A β-1,3-glucanase (LpGluA) of deep subseafloor Laceyella putida JAM FM3001 was purified to homogeneity from culture broth. The molecular mass of the enzyme was around 36 kDa as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). LpGluA hydrolyzed curdlan optimally at pH 4.2 and 80 °C. In spite of the high optimum temperature, LpGluA showed relatively low thermostability, which was stabilized by adding laminarin, xylan, colloidal chitin, pectin, and its related polysaccharides. The gene for LpGluA cloned by using degenerate primers was composed of 1236 bp encoding 411 amino acids. Production of both LpGluA and a chitinase (LpChiA; Shibasaki et al. Appl Microbiol Biotechnol 98, 7845–7853, 2014) was induced by adding N-acetylglucosamine (GluNAc) to a culture medium of strain JAM FM3001. Construction of expression vectors containing the gene for LpGluA and its flanking regions showed the existence of a putative repressor protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aktuganov G, Melentjev A, Galimzianova N, Khalikova E, Korpela T, Susi P (2008) Wild-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and β-1,3-glucanase production. Can J Microbiol 54:577–587

    Article  PubMed  CAS  Google Scholar 

  • Alderkamp AC, van Rijssel M, Bolhuis H (2007) Characterization of marine bacteria and the activity of their enzyme systems involved in degradation of the algal storage glucan. FEMS Microbiol Ecol 59:108–117

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert JM, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant-Microbe Interact 16:1118–1128

    Article  PubMed  CAS  Google Scholar 

  • Browning DF, Busby SJW (2004) The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65

    Article  PubMed  CAS  Google Scholar 

  • Burketová L, Trdá L, Ott PG, Valentová O (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv. doi:10.1016/j.biotechadv. 2015.01.004

    PubMed  Google Scholar 

  • Chiovitti A, Molino P, Crawford SA, Teng R, Spurck T, Wetherbee R (2004) The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. Eur J Phycol 39:117–128

    Article  CAS  Google Scholar 

  • De la Cruz J, Rey M, Lora JM, Hidalgo-Gallego A, Domínguez F, Pintor-Toro JA, Llobell A, Benítez T (1993) Carbon source control on β-glucanases, chitobiase and chitinase from Trichoderma harzianum. Arch Microbiol 159:316–322

    Article  Google Scholar 

  • Durkin CA, Mock T, Armbrust EV (2009) Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Katatny MH, Somitsch W, Robra KH, El-Katatny MS, Gübitz GM (2000) Purification of chitinase and endo-β-1,3-glucanase from Trichoderma harzianum for control of the phytopathogenic Sclerotium rolfsii. Food Technol Biotechnol 38:173–180

    Google Scholar 

  • El-Katatny MH, Gudelj M, Robra KH, Elnaghy MA, Gübitz GM (2001) Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56:137–143

    Article  PubMed  CAS  Google Scholar 

  • Erfle JD, Teather RM (1991) Isolation and properties of a (1,3)-β-D-glucanase from Ruminococcus flavefaciens. Appl Environ Microbiol 57:122–129

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fukada Y, Koide O, Miura T, Kobayashi T, Inoue A, Horikoshi K (2011) Endo-1,5-α-L-arabinase from a subseafloor Bacillus subtilis: purification, characterization, and nucleotide sequence of its gene. J Appl Glycosci 58:61–66

    Article  CAS  Google Scholar 

  • Gouveria L, Marques AE, Sousa JM, Moura P, Bandarra (2010) Microalgae—source of natural bioactive molecules as functional ingredients. Food Sci Technol Bull 7:21–37

    Google Scholar 

  • Helistö P, Aktuganov G, Galimzianova N, Melentjev A, Korpela T (2001) Lytic enzyme complex of an antagonistic Bacillus sp. X-b: isolation and purification of components. J Chromatogr B 758:197–205

    Article  Google Scholar 

  • Hong TY, Meng M (2003) Biochemical characterization and antifungal activity of an endo-1,3-β-glucanase of Paenibacillus sp. isolated from garden soil. Appl Microbiol Biotechnol 61:472–478

    Article  PubMed  CAS  Google Scholar 

  • Hong TY, Cheng CW, Huang JW, Meng M (2002) Isolation and biochemical characterization of an endo-1,3-beta-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-beta-glucan. Microbiology 148:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Kobayashi T, Hatada Y, Horikoshi K (2005) Enzymes in modern detergents. Methods Biotechnol 17:151–163

    CAS  Google Scholar 

  • Klibanov AM (1983) Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol 29:1–27

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Koide O, Mori K, Shimamura S, Matsuura T, Miura T, Takaki Y, Morono Y, Nunoura T, Imachi H, Inagaki F, Takai K, Horikoshi K (2008) Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles 12:519–527

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Koide O, Deguchi S, Horikoshi K (2011) Characterization of chitosanase of a deep biosphere Bacillus strain. Biosci Biotechnol Biochem 75:669–673

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Staehelin LA (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1:447–457

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue: II inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1→3)-β-D-glucans. Appl Microbiol Biotechnol 68:163–173

    Article  PubMed  CAS  Google Scholar 

  • Miyanishi N, Hamada N, Kobayashi T, Imada C, Watanabe E (2003) Purification and characterization of a novel extracellular β-1,3-glucanase produced by Bacillus clausii NM-1 isolated from ezo abalon Haliotis discus hannai. J Biosci Bioeng 95:45–51

    Article  PubMed  CAS  Google Scholar 

  • Myklestad SM (1988) Production, chemical structures, metabolism, and biological function of the (1→3)-linked, β-D-glucans in diatoms. Biol Oceanogr 6:313–326

    Google Scholar 

  • Nagasaki S, Nishioka Y, Mori H, Yamamoto S (1976) Purification and properties of lytic β-1,3-glucanase from Flavobacterium dormitator var. glucanolyticae. Biosci Biotechnol Biochem 40:1059–1067

    CAS  Google Scholar 

  • Neale AD, Wahleithner JA, Lund M, Bonnett H, Kelly A, Meeks-Wagner DR, Peacock WJ, Dennis ES (1990) Chitinase, β-1,3-glucanase, osmotin, and extension are expressed in tobacco explants during flower formation. Plant Cell 2:673–684

    PubMed  PubMed Central  CAS  Google Scholar 

  • Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013) Gene expression in the deep biosphere. Nature 499:205–208

    Article  PubMed  CAS  Google Scholar 

  • Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three β-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 185:4362–4370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Koide O, Kobayashi T, Usami R, Horikoshi K (2015) A pectate lyase from a deep subseafloor Georgenia muralis with unusual molecular characteristics. Extremophiles 19:119–125

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki H, Uchimura K, Miura T, Kobayashi T, Usami R, Horikoshi K (2014) Highly thermostable and surfactant-activated chitinase from a subseafloor bacterium, Laceyella putida. Appl Microbiol Biotechnol 98:7845–7853

    Article  PubMed  CAS  Google Scholar 

  • Stone BA (2009) Chemistry of β-glucans. In: Bacic A, Fincher GB, Stone BA (eds) Chemistry, biochemistry and biology of (1→3)-β-glucans and related polysaccharides. Academic, New York, pp 5–46

    Chapter  Google Scholar 

  • Story J, Vetvicka V, Angove M (2014) β1,3-Glucan anticancer efficacies and synergies: a review. Am J Immunol 10:131–143

    Article  Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CT, Bradford K (2003) Class I chitinase and β-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellins in tomato seeds and leaves. Plant Physiol 133:263–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Compliance with ethical standards

The manuscript has not been submitted to more than one journal for simultaneous consideration.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Kobayashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Uchimura, K., Kubota, T. et al. Biochemical and genetic characterization of β-1,3 glucanase from a deep subseafloor Laceyella putida . Appl Microbiol Biotechnol 100, 203–214 (2016). https://doi.org/10.1007/s00253-015-6983-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6983-5

Keywords

Navigation