Skip to main content
Log in

Glutathione is involved in physiological response of Candida utilis to acid stress

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Candida utilis often encounters an acid stress environment when hexose and pentose are metabolized to produce acidic bio-based materials. In order to reveal the physiological role of glutathione (GSH) in the response of cells of this industrial yeast to acid stress, an efficient GSH-producing strain of C. utilis CCTCC M 209298 and its mutants deficient in GSH biosynthesis, C. utilis Δgsh1 and Δgsh2, were used in this study. A long-term mild acid challenge (pH 3.5 for 6 h) and a short-term severe acid challenge (pH 1.5 for 2 h) were conducted at 18 h during batch culture of the yeast to generate acid stress conditions. Differences in the physiological performances among the three strains under acid stress were analyzed in terms of GSH biosynthesis and distribution; intracellular pH; activities of γ-glutamylcysteine synthetase, catalase, and superoxide dismutase; intracellular ATP level; and ATP/ADP ratio. The intracellular GSH content of the yeast was found to be correlated with changes in physiological data, and a higher intracellular GSH content led to greater relief of cells to the acid stress, suggesting that GSH may be involved in protecting C. utilis against acid stress. Results presented in this manuscript not only increase our understanding of the impact of GSH on the physiology of C. utilis but also help us to comprehend the mechanism underlying the response to acid stress of eukaryotic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    Article  CAS  PubMed  Google Scholar 

  • Bracey D, Holyoak CD, Nebe-von Caron G, Coote PJ (1998) Determination of the intracellular pH (pHi) of growing cells of Saccharomyces cerevisiae: the effect of reduced-expression of the membrane H+-ATPase. J Microbiol Methods 31:113–125

    Article  CAS  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    Article  CAS  PubMed  Google Scholar 

  • Castrillo JI, Kaliterna J, Weusthuis RA, van Dijken JP, Pronk JT (1996) High-cell-density cultivation of yeasts on disaccharides in oxygen-limited batch cultures. Biotechnol Bioeng 49:621–628

    Article  CAS  PubMed  Google Scholar 

  • Chesney J, Eaton JW, Mahoney JJR (1996) Bacterial glutathione: a sacrificial defense against chlorine compounds. J Bacteriol 178:2131–2135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A (2007) S-glutathionylation in protein redox regulation. Free Radic Bio Med 43:883–898

    Article  CAS  Google Scholar 

  • Dong Y, Wei G, Zhang J, Chen X (2011) Mechanism and effect of acid stress on glutathione biosynthesis by Candida utilis. CIESC J (China) 62:3228–3235

    CAS  Google Scholar 

  • Elizabeth L, Watkin J, O'Hara GW, Glenn AR (2003) Physiological responses to acid stress of an acid-soil tolerant and an acid-soil sensitive strain of Rhizobium leguminosarum biovar trifolii. Soil Biol Biochem 35:621–624

    Article  Google Scholar 

  • Foster JW (2000) Microbial responses to acid stress. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, pp 99–116

    Google Scholar 

  • Fozo EM, Quivey RG Jr (2004) Shifts in the membrane fatty acid profile of Streptococcus mutants enhance survival in acidic environments. Appl Environ Microbiol 70:929–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R (2003) An improved HPLC measurement for GSH and GSSG in human blood. Free Radic Biol Med 35:1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Kenchappa RS, Ravindranath V (2003) Gamma-glutamyl cysteine synthetase is up-regulated during recovery of brain mitochondrial complex I following neurotoxic insult in mice. Neurosci Lett 350:51–55

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Eom HJ, Kim Y, Ahn JE, Kim JH, Han NS (2012) Enhancing acid tolerance of Leuconostoc mesenteroides with glutathione. Biotechnol Lett 34:683–687

    Article  CAS  PubMed  Google Scholar 

  • Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    Article  CAS  PubMed  Google Scholar 

  • Koebmann BJ, Nilsson D, Kuipers OP, Jensen PR (2000) The membrane-bound H+-ATPase complex is essential for growth of Lactococcus lactis. J Bacteriol 182:4738–4743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kranner I (2002) Glutathione status correlates with different degree of desiccation tolerance in three lichens. New Phytol 154:451–460

    Article  CAS  Google Scholar 

  • Kren A, Mamnun YM, Bauer BE, Schuller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K (2003) War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23:1775–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee K, Pi K, Kim E, Rho B, Kang S, Lee H, Choi Y (2010) Glutathione-mediated response to acid stress in the probiotic bacterium, Lactobacillus salivarius. Biotechnol Lett 32:969–972

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hugenholtz J, Abee T, Molenaar D (2003) Glutathione protects Lactococcus lactis against oxidative stress. Appl Environ Microbiol 69:5739–5745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242

    Article  CAS  PubMed  Google Scholar 

  • Liao G, Liu Q, Xie J (2013) Transcriptional analysis of the effect of exogenous decanoic acid stress on Streptomyces roseosporus. Microb Cell Fact 12:19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem-Biol Interact 224:164–175

    Article  CAS  Google Scholar 

  • Martinez-Munoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muglia CI, Grasso DH, Aguilar OM (2007) Rhizobium tropici response to acidity involves activation of glutathione synthesis. Microbiology 153:1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Nie W, Wei G, Du G, Li Y, Chen J (2005) Enhanced intracellular glutathione synthesis and excretion capability of Candida utilis by using a low pH-stress strategy. Lett Appl Microbiol 40:378–384

    Article  CAS  PubMed  Google Scholar 

  • Penninckx MJ (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol 26:737–742

    Article  CAS  PubMed  Google Scholar 

  • Pócsi I, Prade RA, Penninckx MJ (2004) Glutathione, altruistic metabolite in fungi. Adv Microb Physiol 49:1–76

    Article  PubMed  Google Scholar 

  • Riccillo PM, Muglia CI, de Bruijn FJ, Roe AJ, Booth IR, Aguilar OM (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182:1748–1753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan S, Hill C, Gahan CG (2008) Acid stress responses in Listeria monocytogenes. Adv Appl Microbiol 65:67–91

    Article  CAS  PubMed  Google Scholar 

  • Smirnova GV, Zakirova ON, Oktiabrskii ON (2001) Role of the antioxidant system in response of Escherichia coli bacteria to cold stress. Mikrobiologiia 70:55–60

    CAS  PubMed  Google Scholar 

  • Sue D, Fink D, Wiedmann M, Boor KJ (2004) sigma B-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 150:3843–3855

    Article  CAS  PubMed  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  • van Urk H, Voll WS, Sheffers WA, van Dijken JP (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 56:281–287

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Wang D, Wei G, Shao N (2012) Enhanced co-production of S-adenosylmethionine and glutathione by an ATP-oriented amino acid addition strategy. Bioresource Technol 107:19–24

    Article  CAS  Google Scholar 

  • Wang Y, Wang D, Wei G, Wang C (2013) Improved co-production of S-adenosylmethionine and glutathione using citrate as an auxiliary energy substrate. Bioresource Technol 131:28–32

    Article  CAS  Google Scholar 

  • Wu C, Zhang J, Du G, Chen J (2013) Aspartate protects Lactobacillus casei against acid stress. Appl Microbiol Biotechnol 97:4083–4093

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Fu RY, Hugenholtz J, Li Y, Chen J (2007) Glutathione protects Lactococcus lactis against acid stress. Appl Environ Microbiol 73:5268–5275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Wei G, Dong H, Zhu T, Li Y (2011) A new knocking-out system in Candida utilis and its application on disrupting the gsh1 gene. Microbiol China 38:795–802

    CAS  Google Scholar 

  • Zhao X, Drlica K (2014) Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 21:1–6

    Article  PubMed  Google Scholar 

  • Zhou JW, Liu LM, Chen J (2010) Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. J Appl Microbiol 110:44–53

    Article  PubMed  Google Scholar 

  • Zhu Y, Sun J, Zhu Y, Wang L, Qi B (2015) Endogenic oxidative stress response contributes to glutathione over-accumulation in mutant Saccharomyces cerevisiae Y518. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-6629-7

    PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21376155, 31171758), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Suzhou Applied Fundamental Research Program (SYN201314). G. Wei was sponsored by Qing Lan Project of Jiangsu Province.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gong-Yuan Wei or Bin Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DH., Zhang, JL., Dong, YY. et al. Glutathione is involved in physiological response of Candida utilis to acid stress. Appl Microbiol Biotechnol 99, 10669–10679 (2015). https://doi.org/10.1007/s00253-015-6940-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6940-3

Keywords

Navigation